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• Concentrations of trace elements were
determined in fish otoliths using ICP-
QMS.

• Compared to river water, Tl shows the
greatest enrichment of any element.

• Thallium dissolved in the Athabasca
River is at natural, background levels.

• The enrichment of Tl in the fish otoliths
is a natural process.

• There is no significant difference in en-
richment upstream or downstream of
industry.
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It has been suggested that open pit mining and upgrading of bitumen in northern Alberta releases Tl and other
potentially toxic elements to the Athabasca River and its watershed. We examined Tl and other trace elements
in otoliths of Trout-perch (Percopsis omiscomaycus), a non-migratory fish species, collected along the Athabasca
River. Otoliths were analyzed using ICP-QMS, following acid digestion, in the metal-free, ultraclean SWAMP lab-
oratory. Compared to their average abundance in the dissolved (b0.45 μm) fraction of Athabasca River, Tl showed
the greatest enrichment in otoliths of any of the trace elements, with enrichments decreasing in the order Tl, Sr,
Mn, Zn, Ba, Th, Ni, Rb, Fe, Al, Cr, Ni, Cu, Pb, Co, Li, Y, V, andMo. Normalizing Tl in the otoliths to the concentrations
of lithophile elements such as Li, Rb, Al or Y in the same tissue reveals average enrichments of 177, 22, 19 and 190
times, respectively, relative to the corresponding ratios in the water. None of the element concentrations (Tl, Li,
Rb, Al, Y) or ratios were significantly greater downstream of industry compared to upstream. This natural bioac-
cumulation of Tl most likely reflects the similarity in geochemical and biological properties of Tl+ and K+.
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Summary of main findings: Thallium is enriched in fish otoliths, relative to the chemical composition of the river,
to the same degree both upstream and downstream of industry.

© 2018 Elsevier B.V. All rights reserved.
1. Introduction

Based upon snowpack sampling, it was suggested that open pit min-
ing and upgrading of bitumen in northern Alberta “releases the 13 ele-
ments considered priority pollutants (PPE) under the Environmental
Protection Agency's CleanWater Act, via air, soil and water, to the Ath-
abasca River and itswatershed” (Kelly et al., 2010, PNAS 107:16178, line
1). The priority pollutants listed by Kelly et al. (2010) refer to Ag, As, Be,
Cd, Cr, Cu, Hg, Ni, Pb, Sb, Se, Tl and Zn. The appearance of Tl on this list of
elements of concern is especially disconcerting, as it is more toxic to
humans than either Cd, Hg or Pb (Peter and Viraraghavan, 2005). Subse-
quent studies of precipitation in the area have further extended the list
of elements of concern to many other trace metals andmetalloids (Bari
et al., 2014; Guéguen et al., 2016). Fish is an important component of the
traditional diet of First Nations communities in northern Alberta, and
concerns about fish health (Tetreault et al., 2003; Schwalb et al., 2015;
Arens et al., 2017; Parrott et al., 2018) as well as fish taste (Barona
et al., 2011) are of particular importance. Concerns have also been
expressed about impacts of trace elements on other aquatic organisms
including invertebrate communities (Gerner et al., 2017) and mussels
(Pilote et al., 2018). Examination of existing, long-term monitoring
data revealed elevated concentrations of Al and Cu in the Athabasca
River during periods of episodic acidification (pH b 6.5) at snowmelt
(Fiera (Biological Consulting Ltd), 2013). Recently it was suggested
that Tl and other trace elements are similarly affected (Alexander
et al., 2017).

As part of a multi-disciplinary study on the physics, chemistry, and
biology of groundwater-surface interactions in the lower reaches of
the Athabasca River,we collected Trout-perch (Percopsis omiscomaycus)
to explore its use as a biomonitor of potentially toxic trace elements;
early work had suggested that this fish could be used as a sentinel spe-
cies for studying environmental change in this watershed (Spafford,
1999). Also known as the Sand Minnow, and with features resembling
both the trout and the perch (Kocovsky et al., 2014), this small fish (typ-
ically not N10 cm long) is non-migratory (Natureserve, 2013), providing
anopportunity to use thefish to indicatewater quality conditions at dis-
crete locations along the river. Here, we examine the trace element
chemistry of otoliths, the small, primarily calcium carbonate (aragonite)
structures that form extracellularly within the inner ear of the fish
(Degens et al., 1969; Campana, 1999). Otoliths are metabolically inert
so that otolith material is not reabsorbed after deposition, and forma-
tion occurs continually in concentric layers of proteins and calcium car-
bonate about the nucleus (Campana and Neilson, 1985). Because of
these characteristics, some trace elements, primarily those that are
non-essential to fish, have been found to reflect environmental levels
(Milton and Chenery, 2001; Arslan and Secor, 2005; Halden and
Friedrich, 2008; Friedrich and Halden, 2010, 2011; Arnold et al., 2015;
Thomas et al., 2017).

2. Materials and methods

2.1. Study sites

Trout-perch (Percopsis omiscomaycus) were collected from 12 sites
on the Athabasca and 2 sites on the Clearwater Rivers during October
of 2014. Fish harvest locationswere based on an earlier geophysical sur-
vey of terrain conductivity: this had identified zones of elevated con-
ductivity which are thought to reflect inputs of saline groundwaters of
natural and/or industrial origin which occur commonly along the
Athabasca River between Fort McMurray and the Firebag River
(Gibson et al., 2011). While the fish collection was taking place, a
water sampling campaign was underway at the same sites on the
river, with much of the trace element data already published (Cuss
et al., 2018; Donner et al., 2017; Javed et al., 2017; Shotyk et al., 2017a).

2.2. Field collection

Trout-perch were collected using a 20 ft Smith-Root electrofishing
boat (Model SR-20H) equipped with a 7.5 GPP electrofishing system
by conducting multiple transects of approximately 1 km in length
starting from the site locations shown in Fig. 1. The GPS coordinates of
the sites are provided in the Supporting information (SI Table 1).
Along with fish sampling, water temperature, turbidity, conductivity
and pH were measured. Trout-perch were euthanized in accordance
with an approved animal care protocol (AUP00001111), frozen at
−20 °C, and shipped back to the University of Alberta for processing.

2.3. Sample preparation

For work on trace elements, 56 Trout-perch were defrosted in the
lab, thenmeasured for fork length andweight. Sagittal otolithswere ex-
tracted, cleanedwith deionized water, and allowed to air dry overnight.
No tumors were found in any of the fish. All subsequent sample han-
dling and analysis was undertaken in the metal-free, ultraclean
SWAMP lab, within polypropylene, Class 100 clean air cabinets (includ-
ing the autosampler for the ICP-MS), using procedures similar to those
described elsewhere (Shotyk et al., 2017a) for the study of trace ele-
ments in the dissolved fraction of the Athabasca River. After weighing,
otolith samples were transferred to acid-cleaned, 4 ml PFA
(perfluoroalkoxy alkane) tubes, then 200 μl of concentrated nitric acid
was added and allowed to react for 30 min. The acid employedwas dis-
tilled twice using sub-boiling distillation in high purity quartz (Duopur,
MLS, Leutkirch, Germany). After adding 800 μl of DI/RO water
(18.2 MΩ·cm; Milli-Q Element, Millipore, USA), the samples were fur-
ther diluted to contain 1 mg/ml, then analyzed using ICP-MS.

2.4. Analysis of trace elements using ICP-MS

Sampleswere analyzed using a quadrupole ICP-MS (ICAPQc, Thermo
Fisher Scientific, Waltham MA, USA) in Kinetic Energy Discrimination
mode, with helium (He) as the collision gas. Stock standard solutions
were purchased from Spex CertiPrep (Metuchen, NJ, USA). Multi-
element solutions (1 & 2A) as well as single element solutions (Mo, Bi,
Re & Sb) were diluted as appropriate to create the calibration curves.
A linear regression was confirmed for all selected isotopes (R2 N 0.99).
Indium-115 was used as the internal standard, with instrument param-
eters of 80 sweeps and 30 ms dwell time for all isotopes.

2.5. Limits of detection, accuracy, and precision

The limits of detection (LODs) for trace elements in otoliths were
based on the daily instrument response (cps) to diluent blanks (2%
HNO3). For each isotope, the LOD was calculated using the average in-
strument response (cps) from 5 blank replicates plus 3 times the associ-
ated standard deviation. The mass/volume LODs were converted to
mass/mass LODs by applying the sample dilution factor. The LODs ob-
tained (μg/kg) were Al, 480; Ba, 3.1; Co, 0.7; Cr, 2.1; Cu, 15; Fe, 230; Li,
1.1; Mn, 3.2; Ni, 17; Pb, 0.2; Rb, 0.9; Sr, 5.1; Tl, 0.6; V, 1.6; Y, 0.2; Zn, 210.



Fig. 1. Trout-perch sampling locations on the Athabasca River during the autumn 2014 campaign, in relation to the terrain conductivity of themain stem of the river. Terrain conductivity
data from Gibson et al. (2011). Water samples collected at the same time, at the same locations, from a second boat, were analyzed for dissolved trace metals as described elsewhere
(Shotyk et al., 2017a).
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The accuracy of the trace element determinations was assessed
using two certified, standard reference materials: 1) GSR-6 Limestone
(Institute of Geophysical and Geochemical Prospection (IGGE), Ministry
of Geology, China) and 2) NIST 1640a, Trace Elements in Natural Water
(National Institute of Standards and Technology,MD,USA).Measured Tl
concentrationswere 84% of the certified values inGSR-6 and 98 and 95%
of their certified values in NIST 1640a. We note that our value for Tl in
GSR-6 (0.30 mg/kg) is closer to the value recently proposed for Tl in
this material (0.34 mg/kg) by Hu and Gao (2008) than the original, cer-
tified value (0.36mg/kg). After removing the outliers (Supporting Infor-
mation), the average concentrations of Tl in otoliths from all sites (17±
5 μg/kg) are 28 times above the corresponding LOD.

3. Results

3.1. Trace elements in otoliths compared to Athabasca River

The elements which were determined in the otoliths are shown in
order of decreasing abundance, spanningmore than five orders of mag-
nitude (Fig. 2a). The average concentrations of these elements in the
dissolved (b0.45 μm) fraction of the Athabasca River (Shotyk et al.,
2017a) are also shown in order of decreasing abundance (Fig. 2b),
again, spanning more than five orders of magnitude. When the ratio of
element concentrations in the otoliths is compared to the correspond-
ing concentrations in the river, it becomes clear that Tl is enriched
more than any other element (Fig. 2c). Given that Tl has no known
physiological function (Fraústo da Silva and Williams, 2001), is one of
themost toxic tracemetals (Peter and Viraraghavan, 2005), and despite
the fact that divalent metal cations are preferentially incorporated into
otolith structures compared to monovalent cations (Melancon et al.,
2005, 2008), the Tl enrichment is remarkable.

3.2. Spatial variation in the relative abundance Tl

Concentrations of Tl in otoliths along the transect are shown in
Fig. 3a. Statistical analyses of the data (Supporting information) show
that Tl concentrations in fish downstream from industry (BM, A8, A5
and A1) are not significantly greater than those from sites upstream of
industry (sites UA5, A20 and A19). Moreover, the concentration of Tl
in the otoliths was not significantly correlated with fork length, weight
of fish or weight of otolith (Spearman's rho, 0.27 b p b 0.31); further,
normalizing the Tl concentrations to the metrics for fish size/age did
not change the lack of significant difference from upstream to down-
stream. The variation in Tl concentrations (Fig. 3a) in the otoliths
along the transect may reflect differences in natural inputs from tribu-
tary streams, including variations in the amounts and proportions of
fine grained sediment, organic matter, or ferric hydroxide (Cuss et al.,
2018), or differences in groundwater inputs. Geochemically, Tl behaves
similarly to K and Rb (Ahrens, 1948; Shaw, 1952; Brooks and Ahrens,
1961). Potassium-bearing silicates such as potassium feldspar and bio-
tite, both common rock-forming minerals, are enriched in Tl: up to 3.3
and 7.4 mg/kg (Heinrichs et al., 1980), compared to 0.9 mg/kg in the
Upper Continental Crust (Rudnick and Gao, 2014). In addition, Tl is
strongly adsorbed onto clay minerals such as illite (Wick et al., 2018).
Variations in metal concentrations in otoliths might also reflect physio-
logical differences among the fish themselves including age, sex,
and health (Lin et al., 2001; Canli and Atli, 2003; Gantner et al., 2009).
Rather than focus exclusively on concentrations, we normalized Tl

Image of Fig. 1


Fig. 2. A) Trace elements (μg/kg) in otoliths of Trout-perch, listed in order of decreasing
abundance (this study). B) Trace elements (ng/l) in the dissolved fraction of the
Athabasca River (Shotyk et al., 2017a). C) Ratio of trace element concentrations in
Trout-perch to Athabasca River (dissolved fraction).

Fig. 3. A) Box-whisker plots showingmedian, minimum, andmaximum concentrations of
Tl (μg/kg) in otoliths of Trout-perch, along with upper and lower quartiles. B) Rb (μg/kg).
C) Tl/Rb ratio. The direction of river flow is from left to right, and the numbers in brackets
(e.g. 3/3) refer to the number of samples N LOD, versus the total number of samples per
site.
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concentrations to an independent element, to help identify the extent of
enrichment or depletion, relative to the composition of the river. Nor-
malizing trace metal concentrations to a reference element is an ap-
proach commonly used in geochemistry to quantify enrichments and
depletions of trace elements, relative to some reference state, including
studies of soils (Nesbitt et al., 1980), sediments (Förstner and
Wittmann, 1989), peat (Shotyk et al., 2001) and atmospheric aerosols
(Rahn, 1976). The justification for this procedure, as well as advantages
and disadvantages of various reference elements, is discussed in detail
in those publications.

Here, we elected to normalize Tl to Rb, for several reasons. First, like
Tl, Rb is a non-essential trace element (Fraústo da Silva and Williams,
2001) and should be unaffected directly by physiological processes. Sec-
ond, unlike Tlwhich is a chalcophile element (Nriagu, 1998)whose geo-
chemical cycle has been considerably modified by human activities
(Pacyna and Pacyna, 2001; Karbowska, 2016), Rb is a lithophile element
and its concentrations in environmental media should mainly reflect
natural inputs. Third, assuming that Tl in the Athabasca River is mainly
in the form of Tl (I), the ionic radii of Tl (149 pm) and Rb (149 pm) are
identical (Emsley, 1998). Finally, Rb was measured in the fish otoliths
(Fig. 3b) as well as the dissolved fraction of the Athabasca River, so an
internally consistent, high quality data set is available for both elements.
The spatial variation in Tl/Rb (Fig. 3c) shows no significant difference
between downstream and upstream values (Supporting information).

3.3. Enrichment of Tl in fish otoliths

The average abundance of Tl and Rb in the otoliths (17.0 ± 4.5 and
230 ± 68 μg/kg, respectively) yields a Tl/Rb ratio of 7.4 × 10−2. Com-
pared to the average Tl/Rb ratio in the dissolved fraction of the Atha-
basca River (3.4 × 10−3), the otoliths are enriched in Tl, relative to Rb,
by a factor of 22 times. Rubidium, however, may accumulate in fish
due to its chemical similarity to K (Patterson and Settle, 1977;
Campbell et al., 2005). Also, it has been suggested that Rb may even
be essential to some animals (Anke and Angelow, 1995). Thus, the en-
richment factor calculation using Rb as reference elementmay underes-
timate the true extent of Tl accumulation. The other monovalent cation
that could be used to estimate the accumulation of Tl is Li; like Rb, Li has
no known physiological function. Lithium concentrations in fish otoliths
along the transect are shown in Fig. 4a, and the Tl/Li ratios in Fig. 4b.
Using the average concentration of Li in the otoliths (0.23 μg/g) as
well as that dissolved in the Athabasca River (7.1 μg/l), we obtain an av-
erage Tl enrichment in the otoliths of 177 times.

4. Discussion

4.1. Selection of reference element for calculating enrichments and
depletions

Calculating the enrichment of Tl in otoliths relative to river water,
using either Rb or Li as reference element, implicitly assumes that Tl
in the Athabasca River is predominantly in the form of Tl (I). The ratio-
nale for this assumption lies in the thermodynamic stability of Tl
(I) versus Tl (III) in aqueous solutions: Tl (III) occupies an extremely
small stability field (Pourbaix, 1966), and only predominates under ox-
idizing conditions that are either extremely acidic ie pH values b1 (Vink,
1993) or alkaline (Vink, 1998) ie pH N 9 (Lin and Nriagu, 1998). The pH

Image of Fig. 2
Image of Fig. 3


Fig. 4. A) Box-whisker plots showingmedian, minimum, andmaximum concentrations of
Li (μg/kg) in otoliths of Trout-perch, along with upper and lower quartiles. B) Tl/Li ratio.
(Direction of river flow is from left to right).
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of the Athabasca River varies seasonally, but it lies within the range 6.8
to 8.5 (Fiera, 2013).Within this pH range, therefore, even at the highest
possible redox potentials, Tl should exist predominantly in the form of
Tl+. Also, speciation studies of Tl in river waters receiving drainage
from an abandoned Pb\\Zn mine in France (Casiot et al., 2011) showed
that N98% of the dissolved Tl was in the form of Tl (I).

Although Tl (I) should be the dominant species in the Athabasca River,
studies of the redox state speciation of Tl in Lake Michigan (Lin and
Nriagu, 1999) showed that ca. 2/3 of the dissolved Tl is in the form of Tl
(III). Ignoring the important detail noted by Lin and Nriagu (1999) that
Fig. 5. A) Box-whisker plots showing median, minimum, and maximum concentrations of Al (
(μg/kg). D) Tl/Y ratio.
much of the Tl (III) may be colloidal, we should at least consider the pos-
sibility that the dominant form of Tl in the Athabasca Rivermay be Tl (III).
Support for this consideration comes from an independent study which
also found that Tl (III)was the predominant species in Great Lakes surface
waters, and attributed this to bacterial oxidation of Tl (I) (Twining et al.,
2003). In a recent study of streamwater in a region of acidmine drainage
in Italy, both Tl (I) and Tl (III)were found to be important oxidation states
of Tl (Campanella et al., 2017). Assuming that Tl (III) is the dominant form
of dissolved Tl in theAthabasca River, itwould bemore reasonable to nor-
malize the Tl concentrations to those of a trivalent cation such as Al or Y.
The concentrations of Al and Y in fish otoliths along the transect, along
with the Tl/Al and Tl/Y ratios, are shown in Fig. 5. Using Al as reference el-
ement for Tl, we obtain an average enrichment in the otoliths of 19 times.
However, we note that the average Al/Y ratio in the fish otoliths exceeds
that of the river by a factor of 9 times (data not shown)whichmeans that
normalizing toAl, like normalizing to Rb,mayunderestimate the extent of
enrichment of Tl. Using Y as the reference element for Tl normalization,
we obtain an average enrichment factor of 190 times. Yttrium concentra-
tions (Fig. 5c) are clearly elevated in fish otoliths sampled from the indus-
trial sector of the river (midstream locations, ie those sites from A18 to
A9), yielding anomalously low Tl/Y ratios (Fig. 5d). The reason for the
anomaly is unclear, and it is surprising, given the conservative behavior
of Y during the weathering cycle.

Regardless of the reference element selected (Al, Li, Rb or Y), Tl is
certainly enriched in the otoliths, relative to river water, by between
19 and 190 times, a phenomenon that can best be described as “bioac-
cumulation” (Mackay et al., 2018). While bioaccumulation of Tl in
aquatic microorganisms is well known (Twiss et al., 2004; Hassler
et al., 2007; Turner and Furniss, 2012; Turner et al., 2013; Pavoni et al.,
2017), we wish to emphasize that Tl is enriched in the fish otoliths, rel-
ative to composition of the river, to a greater degree than any of the
other trace elements we have studied.

4.2. Enrichments and depletions of trace elements in otoliths, versus river
water

The occurrence of trace metals in fish otoliths has been lucidly de-
scribed by Geffen et al. (1998) as “the result of a series of complex
μg/kg) in otoliths of Trout-perch, along with upper and lower quartiles. B) Tl/Al ratio. C) Y

Image of Fig. 4
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interactions, starting with the concentration of the element in the envi-
ronment, its bioavailability, the physiological state of thefish, themech-
anism of different fish species for metal detoxification, the growth rate
of individual fish, and the affinity of the Ca carbonate otolith for the
metal”. To pass from the environment to the otolith, an element must
be transferred across several key physiological interfaces, with the
mechanisms along theway having been described as a series of barriers
or filters, each of whichmay influence the concentration of the element
available for passage to the otolith (Sturrock et al., 2014). Despite all of
the obstacles facing a potentially toxic element such as Tl, not only is Tl
enriched in Trout-perch otoliths, it appears to bemore enriched than in
the case of marine fishes. For example, Tl concentrations in otoliths of
coastal marine fishes are far lower than the Trout-perch (17.0 ± 4.5
μg/kg): Winter Flounder, 1.1 ± 0.9 μg/kg; Striped Bass, 2.1 ± 1.1
μg/kg; Spotted Hake, 2.8 ± 0.8 μg/kg (Arslan, 2005). At the same time,
Tl concentrations in seawater range from 12 to 16 ng/kg (Flegal and
Patterson, 1985)which arewell above the levels found in the Athabasca
River (average concentration 2.8 ng/l; Shotyk et al., 2017a). Thus, the
concentration ratios of Tl in fish otoliths/water are approximately 40
times greater in the case of the Athabasca River compared to seawater.
We note further that K concentrations in seawater (380mg/l, according
to Chester, 2009) are much greater than in the Athabasca River (1.3 ±
0.1 mg/l; Shotyk et al., 2017a). Thus, the K/Tl ratio in seawater exceeds
that of the Athabasca River by approximately 58 times. It is well known
that the Tl+ is the only ion that approaches K+ in respect to mobility
through the K+ ion channel of cell membranes (Fraústo da Silva and
Williams, 2001). It seems reasonable to suspect that fish in the Atha-
basca River contain relatively more Tl in their otoliths (approximately
40 times, compared tomarine fishes) because of the relative abundance
of Tl+ to K+ in freshwaters. Other workers have noted the importance
K+ in determining the toxicity of Tl+, and have even suggested that
water quality guidelines for Tl should consider K concentrations
(Twiss et al., 2004; Hassler et al., 2007).

While it is commonly assumed that uptake of non-essential trace el-
ements is passive, and that uptake is proportional to ambient concentra-
tions, the enrichment of Tl in the Trout-perch otoliths, relative to the
Athabasca River, suggest that physiological processes are involved. It
has been suggested that the abundance of elements such as Tl in fish
otoliths are very low because elements such as these have no biological
utility to the fish and are therefore not assimilated sufficiently to influ-
ence the levels in otoliths (Arslan, 2005). Relative to the composition of
theAthabasca River, however, our data suggests that Tl ismore enriched
than any other trace element (Fig. 2c).

Of the trace elements studied here, only two are enriched in the oto-
liths, relative to the dissolved fraction of the Athabasca River: Al and Tl.
At this time, there does not appear to be enough data in the literature to
decide whether or not Al and Tl are enriched in fish otoliths generally.
Given that the enrichments of Al and Tl in the fish otoliths are found
throughout the transect, both upstream as well as downstream of in-
dustry, and given that dissolved concentrations of Al and Tl in the Ath-
abasca River are comparable to other rivers (Shotyk et al., 2017a), we
suspect that Al and Tl may be enriched in fish otoliths collected from
other aquatic ecosystems.

4.3. Toxicity of Tl and its environmental significance

Thallium is toxic to aquatic organisms (Pickard et al., 2001; Ralph
and Twiss, 2002; Lan and Lin, 2005; Bozcaarmutlu, 2007; Turner and
Furniss, 2012; Rickwood et al., 2015; Tatsi et al., 2015), but LC50 values
for Daphnia magna and Rainbow Trout (Oncorhynchus mykiss) are
above 1 mg/l (Pickard et al., 2001) which is consistent with pioneering
work on the toxicity of Tl to these organisms (Nehring, 1962-1963). In
Canada, the current Canadian Council for Ministers of the Environment
(CCME) Guideline for the Protection of Aquatic Life is 0.8 μg/l (CCME),
and this is based on total, not dissolved concentrations. The average
concentration of total Tl during the 2014 and 2015 Athabasca River
campaigns was 0.01 ± 0.0 μg/l which is 80 times less than the CCME
Guideline value. As noted earlier, the average concentration of dissolved
Tl in the Athabasca River, during the 2014 autumn sampling campaign
when flows are at their lowest and groundwater inputs at their greatest,
was 2.8 ng/l (Shotyk et al., 2017a): this iswell below the values reported
for Lake Michigan and Lake Huron, and comparable to those of Lake Su-
perior (Lin and Nriagu, 1999); in fact, it is within a factor of five of Tl
concentrations in pristine groundwater from carbonate terrains
(Shotyk et al., 2010) and similar to the median value (2 ng/l) reported
for Tl in bottledwatersworldwide (Krachler and Shotyk, 2009). For con-
text, dissolved Tl in the Athabasca River, upstream and downstream of
industry, is below the average value of 4.5 ng/l reported for “clean riv-
ers” and less than one-half of the global average river water value of
6.6 ng/l (Nielsen et al., 2005). In other words, it is important to empha-
size that, while Tl is certainly a potentially toxic heavy metal, its occur-
rence in the Athabasca River, downstream of industry as well as
upstream, is at natural, background values.

4.4. Anthropogenic emissions of Tl to the environment

Thallium is a chalcophile element, and as such is commonly enriched
in metal sulphides (Nriagu, 1998). In consequence, base metals mining
and refining (Zitko, 1975) coal combustion (Cheam et al., 2000) and ce-
ment production (Ewers, 1988) are all potentially important sources of
anthropogenic Tl to the environment (Couture et al., 2011; Karbowska,
2016). Acidic drainage waters in abandoned lead-zinc mining regions
commonly yield elevated Tl concentrations (Belzile and Chen, 2017), in-
cluding districts in Canada (Zitko et al., 1975), China (Liu et al., 2016),
England (Turner and Furniss, 2012; Turner et al., 2013; Tatsi and
Turner, 2014), Italy (Pavoni et al., 2017), Poland (Lis et al., 2003) and
Spain (Martín et al., 2004). For example, in the vicinity of Tl-bearing py-
rites in Tuscany, acidic drainage waters (pH 1.5 to 2.0) typically contain
200 to 1000 μg/l (Campanella et al., 2016); these exceed the CCME
Guideline for Tl by hundreds of times.

4.5. Anthropogenic emissions of Tl from bitumen mining and upgrading?

Lead-zinc ores contain up to 90mg/kg of Tl (Liu et al., 2016). In con-
trast, the concentration of Tl in theAthabasca Bituminous Sands (ABS) is
only 0.09 mg/kg (Bicalho et al., 2017) which is an order of magnitude
less than its abundance in the Upper Continental Crust (0.9 mg/kg, ac-
cording to Rudnick and Gao, 2014). Moreover, N90% of the Tl in the
ABS is found in the mineral (i.e. “sand”) fraction (Bicalho et al., 2017).
Given the abundance of carbonate alkalinity in the Athabasca River
which maintains the pH in the range 7 to 8 (Fiera, 2013), combined
with the fact that silicatemineral dissolution rates are at theirminimum
in this pH range (Sverdrup and Warfvinge, 1988), there appears to be
very limited potential for mobilization of Tl to the aquatic environment.
Our data for Tl in the Athabasca River (Shotyk et al., 2017a), and Trout-
perch otoliths (this study), upstream and downstream of industry, is
consistent with this suggestion. Moreover, these findings for Tl in
water and fish are consistent with the absence of contemporary atmo-
spheric contamination by Tl recorded by Sphagnum moss from
ombrotrophic (ie rain-fed) peat bogs in the vicinity of the open pit bitu-
men mines and upgraders (Shotyk et al., 2014, 2016), and the peat bog
evidence of decades of declining atmospheric Tl contamination (Shotyk
et al., 2017b). Despite the very low concentrations of Tl dissolved in the
Athabasca River, upstreamand downstreamof industry, fish otoliths are
certainly enriched in this potentially toxic element. Clearly, any study of
human impacts on the environmental geochemical cycling of this ele-
ment, must duly consider its natural bioaccumulation.
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