Sinnatamby, R.N.*, Loewen, T.N., Luo, Y., Pearson, D.G., Bicalho, B., Grant-Weaver, I., Cuss, C.W., Poesch,M.S., and W. Shotyk. (2019). Spatial assessment of major and trace element concentrations from Lower Athabasca Region Trout-perch (Percopsis omiscomaycus) otoliths. Science of the Total Environment 655 (10):  363-373.

Abstract:

The Lower Athabasca Region (LAR) is home to the largest bitumen deposit in Alberta, and has seen industrial development related to the extraction and processing of bituminous sands since the late 1960s. Along with industrial and economic growth related to oil sands development, environmental concerns have increased in recent decades, including those about potential effects on fish. We measured major and trace element concentrations in Trout-perch otoliths from the Athabasca and Clearwater Rivers in the LAR, to illustrate spatial variations and identify possible industrial impacts. Both laser ablation ICP-MS and solution-based ICP-MS methods were employed. Of the trace elements enriched in bitumen (V, Ni, Mo and Re), only Ni and Re were above the limits of detection using at least one of the methods. The only significant differences in element concentrations between upstream and downstream locations were found for Li, Cu, and Pb which were more abundant upstream of industry. For comparison and additional perspective, otoliths from the same fish species, but taken from the Batchawana River in northern Ontario, were also examined. The fish from Alberta yielded greater concentrations of Ba, Bi, Li, Mg, Na, Re, Sc, Th and Y, but the Ontario fish more Cr, Rb and Tl, because of differences in geology.

CitationSinnatamby, R.N.*, Loewen, T.N., Luo, Y., Pearson, D.G., Bicalho, B., Grant-Weaver, I., Cuss, C.W., Poesch,M.S., and W. Shotyk. (2019). Spatial assessment of major and trace element concentrations from Lower Athabasca Region Trout-perch (Percopsis omiscomaycus) otoliths. Science of the Total Environment 655 (10):  363-373. 

Graphical Abstract:

Also Read:

Donner, M. Cuss, C., Poesch, M.S., Sinnatamby, N.*, Siddique, T., and W. Shotyk. (2018) Selenium in surface waters of the lower Athabasca River watershed: chemical speciation and implications for aquatic life. Environmental Pollution 243 (B): 1343-1351.

*Lab members: Nilo SinnatambyMark Poesch. Check out opportunities in the lab!

Donner, M. Cuss, C., Poesch, M.S., Sinnatamby, N.*, Siddique, T., and W. Shotyk. (2018) Selenium in surface waters of the lower Athabasca River watershed: chemical speciation and implications for aquatic life. Environmental Pollution 243 (B): 1343-1351.

Abstract:

Selenium in the lower Athabasca River (Alberta, Canada) is of concern due to potential inputs from the weathering of shallow bitumen deposits and emissions from nearby surface mines and upgraders. Understanding the source of this Se, however, is complicated by contributions from naturally saline groundwater and organic matter-rich tributaries. As part of a two-year multidisciplinary study to assess natural and anthropogenic inputs, Se and its chemical speciation were determined in water samples collected along a ~125 km transect of the Athabasca River and associated tributaries. Selenium was also determined in the muscle of Trout-perch (Percopsis omiscomaycus), a non-migratory fish species, that were sampled from selected locations. Dissolved (< 0.45 µm) Se in the Athabasca River was consistently low in 2014 (0.11 ± 0.02 µg L-1; n = 14) and 2015 (0.16 ± 0.02 µg L-1; n = 21), with no observable increase from upstream to downstream. Selenate was the predominant inorganic form (~60 ng L-1) and selenite was below detection limits at most locations. The average concentration of Se in Trout-perch muscle was 2.2 ± 0.4 mg kg-1 (n = 34), and no significant difference (p > 0.05) was observed between upstream and midstream (industrial) or downstream reaches. Tributary waters contained very low concentrations of Se (typically < 0.1 µg L-1), which was most likely present in the form of dissolved organic colloids.

CitationDonner, M. Cuss, C., Poesch, M.S., Sinnatamby, N.*, Siddique, T., and W. Shotyk. 2018. Selenium in surface waters of the lower Athabasca River watershed: chemical speciation and implications for aquatic life. Environmental Pollution 243 (B): 1343-1351.

Graphical Abstract

Also Read: 

Shotyk, W., Bicalho, B., Cuss, C.W., Nagel, A., Noernberg, T., Poesch, M.S., and N.R. Sinnatamby*. (2018) Bioaccumulation of Tl in otoliths of Trout-perch (Percopsis omiscomaycus) from the Athabasca River, upstream and downstream of bitumen mining and upgrading. Science of the Total Environment 650(2): 2559-2566.

*Lab members: Nilo SinnatambyMark Poesch. Check out opportunities in the lab!

Shotyk, W., Bicalho, B., Cuss, C.W., Nagel, A., Noernberg, T., Poesch, M.S., and N.R. Sinnatamby*. (2018) Bioaccumulation of Tl in otoliths of Trout-perch (Percopsis omiscomaycus) from the Athabasca River, upstream and downstream of bitumen mining and upgrading. Science of the Total Environment 650(2): 2559-2566.

Abstract:

It has been suggested that open pit mining and upgrading of bitumen in northern Alberta releases Tl and other potentially toxic trace elements to the Athabasca River and its watershed. We examined Tl and other trace elements in otoliths of Trout-perch (Percopsis omiscomaycus), a non-migratory fish species, collected along the Athabasca River. Otoliths were analyzed using ICP-QMS, following acid digestion, in the metal-free, ultraclean SWAMP laboratory. Compared to their average abundance in the dissolved (< 0.45 micron) fraction of Athabasca River, Tl showed the greatest enrichment in otoliths of any of the trace elements, with enrichments decreasing in the order Tl, Sr, Mn, Zn, Ba, Th, Ni, Rb, Fe, Al, Cr, Ni, Cu, Pb, Co, Li, Y, V, and Mo. Normalizing Tl in the otoliths to the concentrations of lithophile elements such as Li, Rb, Al or Y in the same tissue reveals average enrichments of 177, 22, 19 and 190 times, respectively, relative to the corresponding ratios in the water. None of the element concentrations (Tl, Li, Rb, Al, Y) or ratios were significantly greater downstream of industry compared to upstream. This natural bioaccumulation of Tl most likely reflects the similarity in geochemical and biological properties of Tl+ and K+.

Citation: Shotyk, W., Bicalho, B., Cuss, C.W., Nagel, A., Noernberg, T., Poesch, M.S., and N.R. Sinnatamby*. (2018) Bioaccumulation of Tl in otoliths of Trout-perch (Percopsis omiscomaycus) from the Athabasca River, upstream and downstream of bitumen mining and upgrading. Science of the Total Environment 650(2): 2559-2566.

Graphical Abstract

Also Read:

Donner, M. Cuss, C., Poesch, M.S., Sinnatamby, N.*, Siddique, T., and W. Shotyk. (2018) Selenium in surface waters of the lower Athabasca River watershed: chemical speciation and implications for aquatic life. Environmental Pollution 243 (B): 1343-1351.

* Lab members: Nilo SinnatambyMark Poesch. Check out opportunities in the lab!

Sun, C., Shotyk, W., Cuss, C., Donner, M., Fennel, M., Javed, M., Noernberg, T., Poesch, M.S., Pelletier, R., Sinnatamby, N.*, Siddique, T., and J. Martin. (2017) Characterisation of naphthenic acids and bitumen derived organics in natural water from the Athabasca Oil Sands Region, Canada. Environmental Science and Technology 51 (17): 9524-9532

Abstract:

With growth of the Canadian oil sands industry, concerns have been raised about possible seepage of toxic oil sands process-affected water (OSPW) into the Athabasca River (AR). A sampling campaign in fall 2015 was undertaken to monitor for anthropogenic seepage while also considering natural sources. Naphthenic acids (NAs) and thousands of bitumen-derived organics were characterized in surface water, groundwater, and OSPW using a highly sensitive online solid phase extraction-HPLC-Orbitrap method. Elevated NA concentrations and bitumen-derived organics were detected in McLean Creek (30.1 μg/L) and Beaver Creek (190 μg/L), two tributaries that are physically impacted by tailings structures. This was suggestive of OSPW seepage, but conclusive differentiation of anthropogenic and natural sources remained difficult. High NA concentrations and bitumen-derived organics were also observed in natural water located far north of the industry, including exceedingly high concentrations in AR groundwater (A5w-GW, 2000 μg/L) and elevated concentration in a tributary river (Pierre River, 34.7 μg/L). Despite these evidence for both natural and anthropogenic seepage, no evidence of any bitumen-derived organics was detected at any location in AR mainstem surface water. The chemical significance of any bitumen-derived seepage to the AR was therefore minimal, and focused monitoring in tributaries will be valuable in the future.

Citation: Sun, C., Shotyk, W., Cuss, C., Donner, M., Fennel, M., Javed, M., Noernberg, T., Poesch, M.S., Pelletier, R., Sinnatamby, N., Siddique, T., and J. Martin. (2017) Characterisation of naphthenic acids and bitumen derived organics in natural water from the Athabasca Oil Sands Region, Canada. Environmental Science and Technology 51 (17): 9524-9532

Also Read:

Shotyk, W., Bicalho, B., Cuss, C.W., Nagel, A., Noernberg, T., Poesch, M.S., and N.R. Sinnatamby*. (2018) Bioaccumulation of Tl in otoliths of Trout-perch (Percopsis omiscomaycus) from the Athabasca River, upstream and downstream of bitumen mining and upgrading. Science of the Total Environment 650(2): 2559-2566.

*Lab members: Nilo SinnatambyMark Poesch. Check out opportunities in the lab!

Christensen-Dalsgaard, K., Sinnatamby, R.N.*, and M.S. Poesch. (2014) Metrics for assessing fisheries productivity of oil sands compensation lakes under Canada’s new Fisheries Act. Oil Sands Research and Information Network, University of Alberta, School of Energy and the Environment, Edmonton, Alberta. OSRIN Report No. TR-X. 52 pp

Summary:

The Alberta oil sands region contains one of the world’s largest oil deposits, estimated at 1.7 trillion barrels. Development in this region can have negative effects for aquatic species, governed under Canada’s Fisheries Act. The Fisheries Act allows the possibility for offsetting losses in fisheries productivity, e.g., through the creation of compensation lakes. Offsetting strategies are becoming increasingly important for large-scale developments such as mining operations in the oil sands region; they allow for development while ensuring that the project has ‘no net loss’ in fisheries productivity. In 2012, omnibus Bill C-38 fundamentally changed large sections of the federal Fisheries Act. The focus of fisheries management was shifted from the protection of fish habitat in general to ensuring the ongoing productivity (FP) of fish important to commercial, recreational and aboriginal (CRA) fisheries. Further, the changes formalized the use of offsetting strategies to compensate for damage to fish caused by development. The changes marked the move from the fisheries habitat management program (FHMP) as implemented prior to 2012, to the fisheries protection program (FPP). The goal of the FPP is to “provide for the sustainability and ongoing productivity of commercial, recreational and Aboriginal fisheries”. Lack of standardized protocols and procedures following a shift of this magnitude could not only result in considerable additional expenses for industry, but also in less reproducible and so less reliable results. Rapid standardization of best practices and data collection methods would help ensure cost-efficient, meaningful and transferable data. Currently, these best management practices are being determined through an ongoing process involving Fisheries and Oceans Canada (DFO), industrial partners and government officials. The aim is to define a standard set of indicators for use under the FPP framework and assess which models may suitable for forming the link between data sets and long-term projections for whole-population productivity. The interpretation of the changes to the Fisheries Act has been subject to controversy, making concise and publically available information important. Numerous scientific advisory reports have been published by DFO. However, there is currently a shortage of documents that give an overview over the scientific background necessary to understand how the changes may affect management practices, taking into account knowledge gaps and limitations in terms of data collection techniques. In this report, we will review existing monitoring tools as well as how the changes in policies associated with the shift from the FHMP to the FPP may affect management protocols. Under the FHMP, the conceptual endpoint for assessing the impacts of development on fisheries was to achieve no net loss of the productive capacity of fish habitat (PC). Habitat was quantified mainly by area, and the success of an offsetting project was often determined mainly through acceptable installation. Methods in use under the FHMP provided only approximate values for PC. For a meaningful planning, measurement and monitoring protocol that can help ensure fisheries productivity under the FPP, it may be necessary to move away from the previous practice of managing fish habitat in Canada based on the use of FP as a theoretical concept only. As productivity in itself is difficult to measure directly, it is necessary to find appropriate indicators that can link changes in the components of productivity of individual fish or subsections of populations to changes in population-level fisheries productivity. We have compiled a list of indicators that may be used for estimating productivity of fisheries populations. Solid measurements of fisheries productivity require repeated monitoring protocols extended over multiple years as well as a broadening of the definition of habitat affected by development. The financially and ecologically prohibitive nature of obtaining comprehensive, long-term data sets may make models an essential tool for linking limited data on subsets of populations with whole-population productivity and long-term projections. However, the trade-off between strength of model predictions and quality and quantity of data may make it a challenge to strike the balance between data needs for accurate predictions and financial feasibility. In using knowledge-based standards for planning and executing compensation lake development, a key parameter to evaluate would be the carrying capacity of various compensation lake ecosystems. It may be a challenge to ensure an appropriate agreement between offsetting indicators and environmental assessment indicators, as established ecosystems are compared with populations in the process of establishing in a newly expanded habitat. On the other hand, lack of density dependence in the early establishment phase gives good possibilities for providing solid estimates of intrinsic growth rate of the populations within this specific habitat. Future research should be conducted for areas characterized by intensive development to create models that allow for robust estimates of productivity based on limited and specific indicators that are manageable to measure. As factors limiting fisheries productivity vary between species, habitats and regions, it is likely that this would have to occur through the development of models specific for the given habitats and geographical areas. If the drivers of the ecosystem in question are not well studied, the most cost-effective and ecologically sound way of implementing the FPP may be to adopt the management practices of the FHMP largely unaltered, but with the interpretive end goal shifted to FP. This would only require a mandatory inclusion of population level data in the monitoring protocols, and an extended monitoring period of several years. All of this constitutes protocols already in use under the FHMP. Though much work has been done on measuring and modelling the productivity of fish populations, it has proven difficult or impossible to find simple, reproducible techniques that can be applied across habitat types and ecosystems. In our opinion, the best predictors for fisheries productivity remain the quantity and quality of available fish habitat combined with abundance, size structure data and species composition within the given habitats.

CitationChristensen-Dalsgaard, K., Sinnatamby, R.N., and M.S. Poesch. (2014) Metrics for assessing fisheries productivity of oil sands compensation lakes under Canada’s new Fisheries Act. Oil Sands Research and Information Network, University of Alberta, School of Energy and the Environment, Edmonton, Alberta. OSRIN Report No. TR-X. 52 pp.

Also Read:

Theis, S.* and M. S. Poesch. (In Press).  Mitigation bank applications for freshwater systems: Control mechanisms, project complexity, and caveats. PLOS One.

*Lab members: Nilo SinnatambyMark Poesch. Check out opportunities in the lab!