Join the Fisheries and Aquatic Conservation Lab for a synchronized viewing of Blue Planet 2

Please join us for a synced viewing of Blue Planet 2. During the viewing we will be live chatting with ocean scientists to answer any questions.

Location GSB 802, University of Alberta

Times:

Sunday December 16, 4:00pm – 9:00pm

Monday December 17, 6:00pm – 8:00pm

Tuesday December 18, 6:00pm – 8:00pm

Capacity for seating is 50 people, first come, first serve.

Free pizza!

P.S. – There is no entrance fee, we do however ask that you bring canned food or non-perishable food item for the food drive.

Congratulations to Michael Terry and Caitlyn Donadt for winning “Profiling Alberta Graduate Students” Travel Award

Michael Terry (not shown) and Caitlyn Donadt (shown) were awarded “Profiling Alberta Graduate Students” Travel Award. This is a competitive award given to a student/s at the University of Alberta to highlight their research. Both Michael and Cait will be presenting their research at this year’s Canadian Conference for Fisheries Research in London, Ontario. Great job Michael and Caitlyn.

Sinnatamby, R.N.*, Loewen, T.N., Luo, Y., Pearson, D.G., Bicalho, B., Grant-Weaver, I., Cuss, C.W., Poesch,M.S., and W. Shotyk. (2019). Spatial assessment of major and trace element concentrations from Lower Athabasca Region Trout-perch (Percopsis omiscomaycus) otoliths. Science of the Total Environment 655 (10):  363-373.

Abstract:

The Lower Athabasca Region (LAR) is home to the largest bitumen deposit in Alberta, and has seen industrial development related to the extraction and processing of bituminous sands since the late 1960s. Along with industrial and economic growth related to oil sands development, environmental concerns have increased in recent decades, including those about potential effects on fish. We measured major and trace element concentrations in Trout-perch otoliths from the Athabasca and Clearwater Rivers in the LAR, to illustrate spatial variations and identify possible industrial impacts. Both laser ablation ICP-MS and solution-based ICP-MS methods were employed. Of the trace elements enriched in bitumen (V, Ni, Mo and Re), only Ni and Re were above the limits of detection using at least one of the methods. The only significant differences in element concentrations between upstream and downstream locations were found for Li, Cu, and Pb which were more abundant upstream of industry. For comparison and additional perspective, otoliths from the same fish species, but taken from the Batchawana River in northern Ontario, were also examined. The fish from Alberta yielded greater concentrations of Ba, Bi, Li, Mg, Na, Re, Sc, Th and Y, but the Ontario fish more Cr, Rb and Tl, because of differences in geology.

CitationSinnatamby, R.N.*, Loewen, T.N., Luo, Y., Pearson, D.G., Bicalho, B., Grant-Weaver, I., Cuss, C.W., Poesch,M.S., and W. Shotyk. (2019). Spatial assessment of major and trace element concentrations from Lower Athabasca Region Trout-perch (Percopsis omiscomaycus) otoliths. Science of the Total Environment 655 (10):  363-373. 

Graphical Abstract:

Also Read:

Donner, M. Cuss, C., Poesch, M.S., Sinnatamby, N.*, Siddique, T., and W. Shotyk. (2018) Selenium in surface waters of the lower Athabasca River watershed: chemical speciation and implications for aquatic life. Environmental Pollution 243 (B): 1343-1351.

*Lab members: Nilo SinnatambyMark Poesch. Check out opportunities in the lab!