How to deal with this self-cloning invasive carp (Magazine: Cottage Life)

PoeschLab member Jesse Shirton interviewed on our research on Prussian Carp. Link to article: ‘Cottage Life’

Also Read:

Ruppert, J.L.W.*, Docherty,C.*, Rudolfsen, T.*, Neufeld, K.*, Hamilton, K.*, MacPherson, L. and M.S. Poesch. (2017) Native North American freshwater species get out of the way: Prussian Carp (Carassius gibelio) establishment impacts both fish and macroinvertebrate communities. Royal Society Open Science 4: 170400.

Rudolfsen, T.*, Ruppert, J.W.R.*, Davis, C., Taylor, R., Watkinson, D. and M.S. Poesch (2019) Habitat use and hybridization between the Rocky Mountain Sculpin (Cottus sp.) and Slimy Sculpin (Cottus cognatus). Freshwater Biology 64(3): 391-404.

Abstract: 

Anthropogenic factors such as land-use change, pollution and climate change, can cause fragmentation and reduce the amount of habitat by altering preferred conditions. This process can also bring about novel species interactions and, in some cases, create or alter levels of hybridization between closely related species. We assessed the threat of hybridization to persistence of the Rocky Mountain Sculpin (Cottus sp.) and the Slimy Sculpin (Cottus cognatus) in the Flathead River drainage, British Columbia, Canada. Using 731 genetic samples, 10 polymorphic microsatellite loci and mitochondrial cytochrome C oxidase sequences, we assessed: (1) if there are differences in the distribution of Rocky Mountain Sculpin between contemporary and historical (35 years ago) records, (2) if hybridization is symmetrical in terms of sex specific parental contributions, and (3) if habitat preferences contribute to the distribution of pure parental and hybrid populations. We identified three hybrid locations and found that Rocky Mountain Sculpin have a distribution (1200 – 1902 m) that far exceeds the range limit reported 35 years ago (1200 – 1372 m). Additionally, hybrid mating appears to involve similar proportions of parents of both sexes from each species. Lastly, elevation, water conductivity, turbidity, and dissolved oxygen are significant factors predicting the presence of parental species. Only elevation was significant to hybrid presence. The contrasting associations of parental species with different habitat types appears to influence the extent and distribution of hybridization.

Citation: Rudolfsen, T.*, Ruppert, J.W.R.*, Davis, C., Taylor, R., Watkinson, D. and M.S. Poesch (2019) Habitat use and hybridization between the Rocky Mountain Sculpin (Cottus sp.) and Slimy Sculpin (Cottus cognatus). Freshwater Biology 64(3): 391-404.

Also Read:

Ruppert, J.L.W.*, James, P.M.A., Taylor, R., Rudolfsen, T.*, Veillard, M.*, Davis, C., Watkinson, D. and Poesch, M.S. (2017) Riverscape genetic structure of a threatened and dispersal limited freshwater species, the Rocky Mountain Sculpin (Cottus sp.). Conservation Genetics 18: 925-937.

*Lab members:   Tyana Rudolfsen,  Jonathan Ruppert, Mark Poesch. Check out opportunities in the lab!

Donner, M. Cuss, C., Poesch, M.S., Sinnatamby, N.*, Siddique, T., and W. Shotyk. (2018) Selenium in surface waters of the lower Athabasca River watershed: chemical speciation and implications for aquatic life. Environmental Pollution 243 (B): 1343-1351.

Abstract:

Selenium in the lower Athabasca River (Alberta, Canada) is of concern due to potential inputs from the weathering of shallow bitumen deposits and emissions from nearby surface mines and upgraders. Understanding the source of this Se, however, is complicated by contributions from naturally saline groundwater and organic matter-rich tributaries. As part of a two-year multidisciplinary study to assess natural and anthropogenic inputs, Se and its chemical speciation were determined in water samples collected along a ~125 km transect of the Athabasca River and associated tributaries. Selenium was also determined in the muscle of Trout-perch (Percopsis omiscomaycus), a non-migratory fish species, that were sampled from selected locations. Dissolved (< 0.45 µm) Se in the Athabasca River was consistently low in 2014 (0.11 ± 0.02 µg L-1; n = 14) and 2015 (0.16 ± 0.02 µg L-1; n = 21), with no observable increase from upstream to downstream. Selenate was the predominant inorganic form (~60 ng L-1) and selenite was below detection limits at most locations. The average concentration of Se in Trout-perch muscle was 2.2 ± 0.4 mg kg-1 (n = 34), and no significant difference (p > 0.05) was observed between upstream and midstream (industrial) or downstream reaches. Tributary waters contained very low concentrations of Se (typically < 0.1 µg L-1), which was most likely present in the form of dissolved organic colloids.

CitationDonner, M. Cuss, C., Poesch, M.S., Sinnatamby, N.*, Siddique, T., and W. Shotyk. 2018. Selenium in surface waters of the lower Athabasca River watershed: chemical speciation and implications for aquatic life. Environmental Pollution 243 (B): 1343-1351.

Graphical Abstract

Also Read: 

Shotyk, W., Bicalho, B., Cuss, C.W., Nagel, A., Noernberg, T., Poesch, M.S., and N.R. Sinnatamby*. (2018) Bioaccumulation of Tl in otoliths of Trout-perch (Percopsis omiscomaycus) from the Athabasca River, upstream and downstream of bitumen mining and upgrading. Science of the Total Environment 650(2): 2559-2566.

*Lab members: Nilo SinnatambyMark Poesch. Check out opportunities in the lab!

Shotyk, W., Bicalho, B., Cuss, C.W., Nagel, A., Noernberg, T., Poesch, M.S., and N.R. Sinnatamby*. (2018) Bioaccumulation of Tl in otoliths of Trout-perch (Percopsis omiscomaycus) from the Athabasca River, upstream and downstream of bitumen mining and upgrading. Science of the Total Environment 650(2): 2559-2566.

Abstract:

It has been suggested that open pit mining and upgrading of bitumen in northern Alberta releases Tl and other potentially toxic trace elements to the Athabasca River and its watershed. We examined Tl and other trace elements in otoliths of Trout-perch (Percopsis omiscomaycus), a non-migratory fish species, collected along the Athabasca River. Otoliths were analyzed using ICP-QMS, following acid digestion, in the metal-free, ultraclean SWAMP laboratory. Compared to their average abundance in the dissolved (< 0.45 micron) fraction of Athabasca River, Tl showed the greatest enrichment in otoliths of any of the trace elements, with enrichments decreasing in the order Tl, Sr, Mn, Zn, Ba, Th, Ni, Rb, Fe, Al, Cr, Ni, Cu, Pb, Co, Li, Y, V, and Mo. Normalizing Tl in the otoliths to the concentrations of lithophile elements such as Li, Rb, Al or Y in the same tissue reveals average enrichments of 177, 22, 19 and 190 times, respectively, relative to the corresponding ratios in the water. None of the element concentrations (Tl, Li, Rb, Al, Y) or ratios were significantly greater downstream of industry compared to upstream. This natural bioaccumulation of Tl most likely reflects the similarity in geochemical and biological properties of Tl+ and K+.

Citation: Shotyk, W., Bicalho, B., Cuss, C.W., Nagel, A., Noernberg, T., Poesch, M.S., and N.R. Sinnatamby*. (2018) Bioaccumulation of Tl in otoliths of Trout-perch (Percopsis omiscomaycus) from the Athabasca River, upstream and downstream of bitumen mining and upgrading. Science of the Total Environment 650(2): 2559-2566.

Graphical Abstract

Also Read:

Donner, M. Cuss, C., Poesch, M.S., Sinnatamby, N.*, Siddique, T., and W. Shotyk. (2018) Selenium in surface waters of the lower Athabasca River watershed: chemical speciation and implications for aquatic life. Environmental Pollution 243 (B): 1343-1351.

* Lab members: Nilo SinnatambyMark Poesch. Check out opportunities in the lab!

Banting, A. L. K. (2018) Impacts of a novel predator on aquatic invertebrates in fishless lakes: Implications for conservation translocation

Thesis Title: Impacts of a novel predator on aquatic invertebrates in fishless lakes: Implications for conservation translocation

Author: Allison L.K. Banting

Abstract

Fishless mountain lakes hold important ecological and conservation value. As such,  managers are establishing conservation goals (e.g., non-native fish removal) to restore the  naturalness to many of these lakes. Simultaneously, managers who are recovering native (coldwater) fish populations threatened by climate change (e.g., Westslope Cutthroat Trout,  Oncorhynchus clarki lewisi and Bull Trout, Salvelinus confluentus) are exploring conservation  strategies involving the intentional translocation of native fish species to more suitable areas. These areas include unoccupied, or naturally fishless, stream and lake habitat within their native  range or favorable habitats outside their native range. This action presents a potential threat for  fishless mountain lakes as conservation managers view these as recovery habitat for imperiled native fish species. The purpose of my study was to inform native fish recovery efforts by  assessing the potential consequences of translocating native fishes to naturally fishless lakes, thus  outside their historic distribution. Forty alpine and sub-alpine lakes in Banff National Park, Alberta and Kootenay National Park, British Columbia were sampled and divided into three lake  types, including 13 naturally fishless lakes, 13 native fish-bearing or native fish-stocked lakes,  and 14 non-native fish-stocked lakes historically unoccupied by fish. Littoral invertebrate community composition, density and diversity were examined among lake types to 1) quantify  the impacts of introducing non-native fishes into historically fishless lakes, and 2) quantify the  differences between native fish lakes and naturally fishless lakes. These comparisons provided context for the scale of impact between two predators of different geographic origins (native vs. non-native) introduced to fishless lakes. The variation in environmental gradients amoung lake types was controlled for, suggesting fish presence strongly influenced changes to invertebrate community density and composition. Native and non-native fishes have the capacity to similarly alter littoral invertebrate community composition of fishless lakes, yet non-native fishes appear to have the greatest impact on littoral invertebrate density. Although impacts vary between native and non-native predators, the introduction of any novel fish predator to a fishless lake will result in a negative impact to key littoral macroinvertebrates, such as Gammaridae, Ephemoptera and Plecoptera, and a positive impact to burrowing taxa, such as Oligochaeta, Nemata and Chironomidae. While the introduction of non-native fishes has been repeatedly shown to affect invertebrate communities, the translocation of native fishes similarly has the potential to alter the ecology of a naturally fishless lake. With considerations for possible aquatic-terrestrial cross boundary effects, this study suggests that conservation ecologists consider the entire ecosystem when building resilience for climate change.