Schwalb, A.J., Poesch, M.S., and J. Ackerman (2011) Movement of logperch—the obligate host fish for endangered snuffbox mussels: implications for mussel dispersal. Aquatic Sciences 73: 223-231.

Abstract:

Unionid mussels are highly imperiled and the survival of their local populations is linked to the availability and dispersal potential of their host fish. We examined the displacement distance of logperch (Percina caprodes), which are obligate host fish for endangered snuffbox mussels (Epioblasma triquetra), to determine the dispersal potential by fish. Logperch in the Sydenham River, Ontario, Canada, were electrofished and marked with visible implant elastomer on five sampling dates during the gravid period of E. triquetra. The majority of all recaptures (82%) of P. caprodes occurred within 30 m of their original capture location, with a mean displacement distance of 13 ± 3 m (mean ± standard error, n = 28). These results were consistent with a review of movement studies of small benthic host fish (i.e., darters and sculpins), which revealed average fish displacement distances of 37 ± 19 m (n = 14 species; range: 4–275 m). However, significantly greater movement distances were also found and the maximum displacement distance increased significantly with the spatial extent of the study and with the duration of the study. These results indicate that many P. caprodes remain in a small area, which could restrict the dispersal and (re)colonization potential of E. triquetra. Further studies are needed to determine the dispersal potential of mussels via host fish, which may be important for maintaining the connectivity among unionid populations.

Citation: Schwalb, A.J., Poesch, M.S., and Ackerman, J. 2011. Movement of logperch—the obligate host fish for endangered snuffbox mussels: implications for mussel dispersal. Aquatic Sciences 73: 223-231.

Also Read:

Veillard, M.F.*, Ruppert, J.L.W.*, Tierney, K., Watkinson, D., and M.S. Poesch. (2017) Comparative swimming and station-holding ability of the threatened Rocky Mountain Sculpin (Cottus sp.) from four hydrologically distinct rivers. Conservation Physiology 5: 1-12.

Poesch, M.S., Mandrak, N.E., and R. L. McLaughlin (2008) A practical framework for selecting among single species, multi-species and ecosystem-based recovery plans. Canadian Journal for Fisheries & Aquatic Science 65: 2656-2666.

Abstract:

Science-based approaches for selecting among single-species, community-, and ecosystem-based recovery plans are needed to conserve imperilled species. Selection of recovery plans has often been based on past success rates with other taxa and systems or on economic cost, but less on the ecology of the system in question. We developed a framework for selecting a recovery plan based on the distributions and ecology of imperilled and nonimperilled species across available habitat types and applied it to fishes in the Sydenham River, Ontario, Canada. We first tested whether distributions of fishes were adequately predicted by habitat features hypothesized to limit the distributions of imperilled fishes versus a broader set of habitat features known to predict fish distributions. We then tested whether imperilled species occurred in similar or disparate habitat types. For the Sydenham River, an ecosystem-based recovery plan was deemed most appropriate because imperilled species occur in disparate habitat types. We lastly provide decision criteria to facilitate applications of our framework to the selection of recovery plans for other species and systems.

Citation: Poesch, M.S., Mandrak, N.E., and McLaughlin, R.L. 2008. A practical framework for selecting among single species, multi-species and ecosystem-based recovery plans. Canadian Journal for Fisheries & Aquatic Science 65: 2656-2666.

Also Read:

Castaneda, R.A., Ackerman, J.D., Chapman, L.J., Cooke, S.J., Cuddington, K., Dextrase, A., Jackson, D.A., Koops, M.A., Krkosek, M., Loftus, K., Mandrak, N.E., Martel, A.L., Molnar, P., Morris, T.J., Pitcher, T.E., Poesch, M.S., Power, M., Pratt, T.C., Reid, S.M., Rodriguez, M.A., Rosenfeld, J., Wilson, C., Zanatta, D.T. and D.A.R. Drake. (2021) Approaches and research needs for advancing the protection and recovery of imperilled freshwater fishes and mussels in Canada. Canadian Journal of Fisheries and Aquatic Sciences 78 (9): 1356-1370.

Poesch, M.S., Mandrak, N.E., and R. L. McLaughlin (2007) The effectiveness of two common sampling methods for sampling imperiled freshwater fishes. Journal of Fish Biology 70: 691-708.

Abstract:

This study tested the hypothesis that the most common gear type used to sample fishes in wadeable systems, electrofishing, was more effective than another commonly used gear type, seining, for sampling fish species at risk. Five predictions were tested. At sites where species at risk were detected, (1) the probability of detecting the species at risk, (2) the probability of only one gear type detecting the species at risk and (3) the estimated catch per unit effort of the species at risk, was as high as, or higher, when using electrofishing than when using a seine. (4) The number of sample sites required to detect a species at risk within a watershed and (5) the number of subsections required to detect a species at risk within a site, were as low as, or lower, using electrofishing than the number required using a seine. Based on analyses of these measurements, electrofishing was a more effective gear type than seining for sampling fish species at risk, irrespective of the unit (presence or absence or catch per unit effort) or scale of measurement (watershed or site level). Dissolved oxygen, turbidity, specific conductivity and nitrate concentrations were measured at each site and did not account for the between gear differences. Selection of sampling gear can be a fundamental consideration for the assessment of fish species at risk, where, unlike common species, they may be particularly influenced by small population sizes, restricted geographic ranges and narrow habitat preferences. Resource managers must weigh differences in the risks of injury of fish species at risk against differences in the effectiveness of each gear type when deciding between gear types and the utility of the assessments they represent.

Citation: Poesch, M.S., Mandrak, N.E., and McLaughlin, R.L. 2007. The effectiveness of two common sampling methods for sampling imperiled freshwater fishes. Journal of Fish Biology 70: 691-708.

Also Read:

Neufeld, K.*, Watkinson, D., and Poesch, M.S. (2016) The effect of hydrologic alteration on capture efficiency of freshwater fishes in a highly modified Prairie stream: Implications for bio-monitoring programs. River Research and Applications 32: 975-983.