Maitland, B.M.*, M.S. Poesch, Anderson, A.E., and S. Pandit*. (2016) Industrial road crossings drive changes in community structure and instream habitat for freshwater fishes in the Boreal forest. Freshwater Biology. 61: 1-18.

Abstract:

Stream crossing structures are an increasingly prevalent anthropogenic feature on North American riverscapes, particularly in watersheds affected by industrial resource development in sensitive boreal environments. If improperly managed, stream crossings have the potential to alter fish habitat and impede fish movement. This study assessed instream habitat characteristics and fish communities from 33 culverted, bridged and reference streams in an industrialising region of the boreal forest in west-central Alberta. Mixed-effects modelling and multivariate analysis were used to determine impacts of stream crossings at three scales: whole-stream scale, within-stream scale and the interaction of scales. Instream habitat characteristics such as mean depth, water velocity, percent fines, turbidity, water temperature and dissolved oxygen showed significant between-stream as well as within-stream differences among stream crossings. The majority of fish species exhibited significantly lower densities (n m−2) in upstream habitats as compared to downstream habitats, including a significant reduction in Slimy Sculpin densities in culverted streams. Multivariate tests corroborated these results, showing that fish assemblages differ as a function of stream type. This study suggests industrial stream crossings influence abiotic habitat characteristics in freshwater ecosystems, restrict biotic connectivity and impact fish community structure at the whole-stream and within-stream scales. Alterations to stream ecosystems associated with stream crossings may be driving large-scale changes in stream fish communities in the boreal forest. With expanded development expected in much of North America’s boreal region, mitigation measures which limit impacts from stream crossings are needed to ensure proper ecosystem function in freshwater systems.

CitationMaitland, B.M.*, M.S. Poesch, Anderson, A.E., and S. Pandit*. (2016) Industrial road crossings drive changes in community structure and instream habitat for freshwater fishes in the Boreal forest. Freshwater Biology. 61: 1-18.

Figure – Barplot of fish community metrics of (a) fish density (number per m2) and (b) species richness across stream types and upstream and downstream locations (mean +/- SE). Sample sizes for stream types were: culvert (Cul) N = 11, bridge (Bri) N = 11, reference (Ref) = 11. Significant differences across stream types are identified by upper case letters, while significant differences between upstream and downstream reaches are identified by lower case letters.

Also Read:

Fischer, S.M.*, Ramaza, P., Simmons, S., Poesch, M.S. and M.A. Lewis. (2023) Boosting propagule transport models with individual-specific data from mobile apps. Journal of Applied Ecology 60(5): 934-949.

*Lab members: Bryan MaitlandShubha PanditMark Poesch. Check out opportunities in the lab!

Maitland, B.M.*, Anderson, A. and Poesch, M.S. (2016) Prioritising culvert removals to restore habitat for at-risk salmonids in the Boreal forest. Fisheries Management and Ecology 23: 489-502.

Abstract:

Stream crossing structures are an increasingly prevalent anthropogenic feature on North American riverscapes, particularly in watersheds affected by industrial resource development in sensitive boreal environments. If improperly managed, stream crossings have the potential to alter fish habitat and impede fish movement. This study assessed instream habitat characteristics and fish communities from 33 culverted, bridged and reference streams in an industrialising region of the boreal forest in west-central Alberta. Mixed-effects modelling and multivariate analysis were used to determine impacts of stream crossings at three scales: whole-stream scale, within-stream scale and the interaction of scales. Instream habitat characteristics such as mean depth, water velocity, percent fines, turbidity, water temperature and dissolved oxygen showed significant between-stream as well as within-stream differences among stream crossings. The majority of fish species exhibited significantly lower densities (n m−2) in upstream habitats as compared to downstream habitats, including a significant reduction in Slimy Sculpin densities in culverted streams. Multivariate tests corroborated these results, showing that fish assemblages differ as a function of stream type. This study suggests industrial stream crossings influence abiotic habitat characteristics in freshwater ecosystems, restrict biotic connectivity and impact fish community structure at the whole-stream and within-stream scales. Alterations to stream ecosystems associated with stream crossings may be driving large-scale changes in stream fish communities in the boreal forest. With expanded development expected in much of North America’s boreal region, mitigation measures which limit impacts from stream crossings are needed to ensure proper ecosystem function in freshwater systems.

CitationMaitland, B.M.*, Anderson, A. and Poesch, M.S. (2016) Prioritising culvert removals to restore habitat for at-risk salmonids in the Boreal forest. Fisheries Management and Ecology 23: 489-502.

Site Locations of Assessed Stream Crossings, including (a) Simoneete, (b) Latronell and (c) Deep Valley watersheds in Alberta Canada.

Prioritization given: net habitat gain (a,d), number of barriers removed (c,f) and the mean cost per barrier (c,f) across Deep Valley and Latronell subwatersheds.

Also Read:

Medinski, N.A.*, Maitland, B.M.*, Jardine, T.D., Drake, D.A.R. and M.S. Poesch (2022) A catastrophic coal mine spill in the Athabasca River watershed induces isotopic niche shifts in stream biota including an endangered rainbow trout ecotype. Canadian Journal for Fisheries and Aquatic Sciences 79(8): 1321-1334.

*Lab members: Bryan MaitlandMark Poesch. Check out opportunities in the lab!

Poesch, M.S., Chavarie, L., Chu, C., Pandit, S.N.*, and W. Tonn. (2016) Climate change impacts on freshwater fishes: A Canadian perspective. Fisheries 41(7): 385-391.

Abstract:

Current and projected patterns of global climate change are a major concern to freshwater fisheries in Canada. The magnitude of the impacts of climate change vary among species and ecoregions. The latest climate change scenario projections for Canada suggest that by 2050 temperatures will increase between about 4.9°C ± 1.7°C (average mean ± standard deviation) and 6.6°C ± 2.3°C under the Representative Concentration Pathways (RCPs) 2.6 and 8.5 emission scenarios, respectively. These changes will have an important influence on the physiology, distribution, and survival of freshwater fishes, as well as other ecological processes in direct, indirect, and complex ways. Here we provide a perspective from the Canadian Aquatic Resources Section on the impacts of climate change to freshwater fishes. Given the geographic size and diversity of landscapes within Canada, we have divided our perspective into three regions: eastern, western, and northern Canada. We outline the impacts of climate change to these regions and outline challenges for fisheries managers. Because climate change does not operate in isolation of other environmental threats, nor does it impact species in isolation, we suggest improved inter jurisdictional integration and the use of an adaptive and ecosystem-based approach to management of these threats.

Citation: Poesch, M.S., Chavarie, L., Chu, C., Pandit, S.N.*, and W. Tonn. (2016) Climate change impacts on freshwater fishes: A Canadian perspective. Fisheries 41(7): 385-391.

List of species that have potential to extend their range and/or abundance northward into the Arctic, with some biological characteristics related to expansion of their existing ranges.

Also Read:

Theis, S.*  Castellanos D.A., Hamann A. and M.S. Poesch. (2022) Exploring the potential role of habitat banks in preserving freshwater biodiversity and imperiled species in the United States. Biological Conservation 273: 109700.

*Lab members: Shubha PanditMark Poesch. Check out opportunities in the lab!

Neufeld, K.*, Watkinson, D., and Poesch, M.S. (2016) The effect of hydrologic alteration on capture efficiency of freshwater fishes in a highly modified Prairie stream: Implications for bio-monitoring programs. River Research and Applications 32: 975-983.

Citation: Neufeld, K.*, Watkinson, D., and Poesch, M.S. (2016) The effect of hydrologic alteration on capture efficiency of freshwater fishes in a highly modified Prairie stream: Implications for bio-monitoring programs. River Research and Applications 32: 975-983.

Abstract

Hydrology is a defining feature of aquatic ecosystems. Changes in stream hydrology, due to climate change, water use and impoundment, have been shown to negatively affect fish populations. Assessing changes in hydrology and its effect on fish populations and communities remains an important consideration for aquatic monitoring programmes across the globe. In this study, we used the Milk River in southern Alberta as a model system to understand how hydrologic alteration may also affect capture probabilities of fishes and impact instream monitoring programmes. The Milk River receives the majority of its April to October flow via an inter-basin transfer from the St. Mary River, drastically altering the hydrologic regime and instream habitats for fishes during this augmentation period. We estimated species-specific seine net capture probabilities of fishes in the Milk River during augmentation and natural flow periods using depletion surveys in both open and enclosed sites. Using habitat data collected during the seine surveys, linear mixed-effects models were created with capture efficiency as the dependent variable. Models were compared using corrected Akaike’s information criterion, and the relative contributions of the different variables to the top models were examined. We found that species and flow characteristics, such as water velocity and the state of augmentation, played a prominent role in many of the top models explaining variation in capture efficiency. These results demonstrate that changes to stream hydrology clearly have the potential to impact gear efficiency and individual species assessments. Stream monitoring programmes, which aim to determine long-term trends in aquatic ecosystem health, need to be mindful that any change to stream hydrology—from climate change, fragmentation or stream alteration—can alter capture efficiency of the sampling gear and inadvertently alter species-specific trends.

*Lab members: Kenton NeufeldMark Poesch. Check out opportunities in the lab!

Seine net capture probability for Flathead Chub, Longnose Dace, Sucker species, and Western Silvery Minnow in the Milk River in southern Alberta during augmented and natural flow conditions, and from open and closed surveys. 

 

Neufeld, K.*, Blair, S., and Poesch, M.S. (2015) Retention and stress effects of visible implant tags when marking Western Silvery Minnow Hybognathus argyritis and its application to other cyprinids (family Cyprinidae). North American Journal of Fisheries Management 35: 1070-1076.

Abstract:

Visible implant tags are commonly used in fisheries research to mark individuals or batches of fish as part of movement and mark–recapture studies. To be effective, these tags generally need to have high retention rates and little impact on the behavior or physiology of the marked individuals. We tested the retention rates of both visible implant elastomer (VIE) and visible implant alphanumeric (VIA) tags in 80–139-mm Western Silvery Minnow Hybognathus argyritis over a 104-d period. We also measured plasma cortisol and lactate to determine the impact of tagging on stress levels. We found that VIE tags had 100% retention and did not cause a significant increase in plasma cortisol levels, though plasma lactate levels were elevated in VIE treatment groups. Overall, VIE tags were found to be suitable for marking Western Silvery Minnow and similar species. Visible implant alphanumeric tags had 36% retention over 104 d and did not cause significant increases in plasma cortisol, though plasma lactate was elevated in the treatment group with both VIE and VIA tags. Given the high retention rates and low stress effects, VIE tags appear to be more beneficial for use with Western Silvery Minnow and similar-sized cyprinids.

Citation: Neufeld, K.*, Blair, S., and Poesch, M.S. 2015. Retention and stress effects of visible implant tags when marking Western Silvery Minnow Hybognathus argyritis and its application to other cyprinids (family Cyprinidae). North American Journal of Fisheries Management 35: 1070-1076.

Average Western Silvery Minnow (a) plasma cortisol and (b) plasma lactate concentrations for the various tagging treatments (VIE – Visual Implant Elastomer, VIA – Visual Implant Alpha, VIE+VIE – both) for days 1, 54 and 103/104. Error bars represent SD.

Also Read:

Fischer, S.M.*, Ramaza, P., Simmons, S., Poesch, M.S. and M.A. Lewis. (2023) Boosting propagule transport models with individual-specific data from mobile apps. Journal of Applied Ecology 60(5): 934-949.

*Lab members: Kenton NeufeldMark Poesch. Check out opportunities in the lab!

Maitland, B.*, Cooke, S. and M.S. Poesch. (2015) Finding the path to a successful graduate and research career: Advice for early career researchers. Fisheries 40: 399-403.

Citation: Maitland, B.*, Cooke, S. and M.S. Poesch. 2015. Finding the path to a successful graduate and research career: Advice for early career researchers. Fisheries 40: 399-403.

Abstract

The path to a successful graduate and research career is a complex and difficult one. Early career researchers (ECRs) have myriad choices and tasks to prioritize and complete as they build their CV but are often confronted with unfamiliar situations in which advice from more senior researchers can be extremely valuable. Here, we summarize a recent workshop held for ECRs by the Canadian Aquatic Resource Section of the American Fisheries Society (AFS) with support from the Education Section. Sessions touched on (1) getting published, (2) science communication and outreach, (3) scoring a job or grad school position, and (4) working within the science–policy interface. The decades of collective experience brought to the table should be shared with the broader readership of AFS because it may prove useful to ECRs as well as stimulate meaningful conversations on these important and timely issues.

*Lab members: Bryan MaitlandMark Poesch. Check out opportunities in the lab!

Poesch, M.S. (2015) To dendrogram or not? Consensus methods show that the question needed to move functional diversity metrics forward. Ideas in Ecology and Evolution. 8: 70-74.

Abstract:

Functional diversity indices have become important tools for measuring variation in species characteristics that are relevant for ecosystem services. A frequently used dendrogram-based method for measuring functional diversity, ‘FD’, was shown to be sensitive to methodological choices in its calculation, and consensus methods have been suggested as an improvement. The objective of this study was to determine whether consensus methods can be used to reduce sensitivity when measuring FD. To calculate FD, a distance measure and a clustering method must be chosen. Using data from three natural communities, this study demonstrates that consensus methods were unable to resolve even simple choices of distance measure (Euclidean and cosine) and clustering method (UPGMA, complete and single linkage). Overall, there was low consensus, ranging from 41–45%, across choices inherent in functional diversity. Further, regardless of how FD was measured, or how many species were removed from the community, FD closely mirrored species richness. Future research on the impact of methodological choices, including choices inherent in producing a dendrogram and the statistical complications they produce, are needed to move functional diversity metrics forward.

Citation: Poesch, M.S. 2015. To dendrogram or not? Consensus methods show that the question needed to move functional diversity metrics forward. Ideas in Ecology and Evolution. 8: 70-74.

Also Read:

Serbu, J. A., St. Louis, V. L., Emmerton, C. A., Tank S., Criscitello, A., Silins, U., Bhatia, M., Cavaco, M., Christenson, C., Cooke, C., Drapeau, H., Enns, S. J., Flett, J., Holland, K., Lavelle-Whiffen, J., Ma, M., Muir, C., Poesch, M. S., and J. Shin. (2023). A comprehensive biogeochemical assessment of climate-threatened glacial river headwaters on the eastern slopes of the Canadian Rocky Mountains. JGR Biogeosciences.

Poesch, M.S. (2014) Developing standardized methods for sampling freshwater fishes with multiple gears: Effect of sampling order versus sampling method. Transactions of the American Fisheries Society 143: 353-362

Abstract:

Developing robust methodologies for sampling freshwater fishes is important for the assessment and recovery of aquatic biodiversity. Commonly, sampling protocols recommend the use of both electrofishing and seining to reduce bias when sampling freshwater fishes. The objective of this study was to determine whether sampling method, sampling order, or the combination of these influenced the assessment of diversity and abundance of common or rare freshwater fishes at both the species and assemblage level. Fifty sites were sampled in the Sydenham River, Ontario, Canada, where paired sites were sampled using both electrofishing and seine netting in close proximity but also reversing the initial sampling order. Differences in the abundance and richness of common and rare freshwater fishes were tested with two-way ANOVA and multivariate ANOVA. Multivariate differences in the representation of species assemblages were compared using Procrustes analysis across ordinations built using differences in sampling method and sampling order. Electrofishing outperformed seine netting for maximizing the abundance of both all species caught (P = 0.004) and only those species considered rare (P = 0.049). While capture efficiencies generally decreased with subsequent sampling, the interaction between sampling method and sampling order for maximizing richness estimates of rare species was significant (P = 0.049). There were important species and assemblage differences when sampling order was reversed. The representation of either sunfishes (family Centrarchidae) or catfishes (family Ictaluridae) differed in multivariate space, given different sampling order. In addition, the capture of Blackstripe Topminnow Fundulus notatus was enhanced when seine netting was used after electrofishing. This study highlights the often neglected aspect of choosing an appropriate sampling order when developing protocols for sampling freshwater fishes with multiple methods. Overall, the combination of electrofishing, followed by seine netting, appears to maximize capture efficiencies of both common and rare fishes; however, researchers should be aware that sampling order can alter the representation of species and assemblages in multivariate assessments.

Citation: Poesch, M.S. 2014. Developing standardized methods for sampling freshwater fishes with multiple gears: Effect of sampling order versus sampling method. Transactions of the American Fisheries Society 143: 353-362.

Also Read:

Chu, C., Holbrook, B., Sandstrom, S. and M.S. Poesch. (In Press) Cold water fish sampling in small standing waters. In Standard Methods for Sampling North American Freshwater Fishes (2nd edition), Merrcado, S. and K. Pope (eds.), American Fisheries Society, Bethesda, MY.

Poesch, M.S. and D.A. Jackson (2012) Addressing the removal of rare species in multivariate bioassessments: the impact of methodological choices. Ecological Indicators 18: 82-90.

Abstract:

Multivariate analyses are important tools for the biological assessment of ecological communities. Despite the popularity of multivariate analyses in bioassessments, there is considerable controversy over how to treat rare species. As this debate remains unresolved, the objective of this study was to develop a methodology to quantify the impacts of removing rare species relative to other decisions inherent in multivariate analyses and to provide insight into their relative influence in our studies. Using fish species from a well-sampled system, we assessed the impact of several choices common to multivariate analyses, including the removal of rare species, ordination technique and measures of multivariate resemblance. Comparisons of multivariate analyses demonstrated the choice of ordination method explained 26% of the variation among the various results, followed by the choices regarding the removal of rare species (24.8%) and resemblance measure (11%). At the same time, the removal of rare species had important site-level impacts relative to full dataset, including a >9 fold change in sites impacted by the removal of single species, with an emphasis on removing species more correlated to anthropogenic stress. Our study demonstrates that the removal of rare species had similar or greater influence in multivariate analyses as other choices inherent in their calculation, such as the choice of ordination method. Better justifications for the removal of rare species, along with all decisions in multivariate analyses, are needed to move bioassessments forward.

Citation: Poesch, M.S. & Jackson, D.A. 2012. Addressing the removal of rare species in multivariate bioassessments: the impact of methodological choices. Ecological Indicators 18: 82-90.

Also Read:

Fischer, S.M.*, Ramaza, P., Simmons, S., Poesch, M.S. and M.A. Lewis. (2023) Boosting propagule transport models with individual-specific data from mobile apps. Journal of Applied Ecology 60(5): 934-949.

Poesch, M.S. and D.A. Jackson (2012) Impact of species-specific dispersal and regional stochasticity on estimates of population viability in stream metapopulations. Landscape Ecology 27: 405-416.

Abstract:

Species dispersal is a central component of metapopulation models. Spatially realistic metapopulation models, such as stochastic patch-occupancy models (SPOMs), quantify species dispersal using estimates of colonization potential based on inter-patch distance (distance decay model). In this study we compare the parameterization of SPOMs with dispersal and patch dynamics quantified directly from empirical data. For this purpose we monitored two metapopulations of an endangered minnow, redside dace (Clinostomus elongatus), using mark-recapture techniques across 43 patches, re-sampled across a 1 year period. More than 2,000 fish were marked with visible implant elastomer tags coded for patch location and dispersal and patch dynamics were monitored. We found that species-specific dispersal and distance decay models provided qualitatively similar rankings of viable patches; however, there were differences of several orders of magnitude in the estimated intrinsic mean times to extinction, from 24 and 148 years to 362 and >100,000 years, depending on the population. We also found that the rate of regional stochasicity had a dramatic impact for the estimate of species viability, and in one case altered the trajectory of our metapopulation from viable to non-viable. The divergent estimates in time to extinction times were likely due to a combination species-specific behavior, the dendritic nature of stream metapopulations, and the rate of regional stochasticity. We demonstrate the importance of developing comparative analyses using species- and patch-specific data when determining quantitative estimates for mean time to extinction, which in the case of redside dace, were highly sensitive to different estimates of dispersal.

Citation: Poesch, M.S. & Jackson, D.A. 2012. Impact of species-specific dispersal and regional stochasticity on estimates of population viability in stream metapopulations. Landscape Ecology 27: 405-416.

Also Read:

Neufeld, K.*, Watkinson, D., Tierney, K. and M.S. Poesch. (2018) Incorporating connectivity in measures of habitat suitability to assess impacts of hydrologic alteration to stream fish. Diversity and Distributions 24: 593-604.