Theis, S.*  Castellanos D.A., Hamann A. and M.S. Poesch. (2022) Exploring the potential role of habitat banks in preserving freshwater biodiversity and imperiled species in the United States. Biological Conservation 273: 109700.

Abstract:

Habitat banking, a conservation approach to offset habitat loss, has been widely accepted and implemented in the United States, especially for the protection of freshwater ecosystems. The potential adequacy of the habitat banking approach has, however, not yet been formally quantified in the context of its underlying framework and policies. Using a gap analysis approach, we test the current adequacy and future potential of habitat banking for 2313 approved and 552 pending banks in the United States. In the analysis, we consider water stress due to projected climate change, freshwater diversity, imperiled species, and human population growth, among other factors. The results show that the highest conservation urgency was assigned to states in the Southwest with high levels of species imperilment and large increases in anticipated water stress. The banking network covers most of the freshwater biodiversity hotspots in the East and Southeast. Land ownership is a potential driver for the low bank density in western states, with large proportions of land being owned and managed through federal agencies and only 58 banks situated on federal land. While the banking network in the United States is one of the most developed on a global level, gaps and priority areas can be clearly identified to strengthen the current network and its role in preserving freshwater habitat and diversity. Keywords: Offsetting; Conservation policy; Biodiversity market; Preservation.

Citation: Theis, S.  Castellanos D.A., Hamann A. and M.S. Poesch. (2022) Exploring the potential role of habitat banks in preserving freshwater biodiversity and imperiled species in the United States. Biological Conservation 273: 10970.

Also Read:

Theis, S.* and M. S. Poesch. (In Press).  Mitigation bank applications for freshwater systems: Control mechanisms, project complexity, and caveats PLOS One.

 

*Lab members: Sebastian Theis and Mark Poesch. Check out opportunities in the lab!

Theis, S.*  Koops, M. and M.S. Poesch. (2022) A meta-analysis on the effectiveness of offsetting strategies for harm to freshwater fishes. Environmental Management 70(5): 793-807.

Abstract:

Offsetting aims to compensate for negative impacts due to authorized anthropogenic impacts. While anchored into legislation through extensive frameworks across many countries, residual or chronic impacts can occur after offset establishment for example because of the ephemeral timescale of some projects. Advice and best practice on how to approach these impacts is rare. To address this, we reviewed 30 projects based on a systematic review and meta-analysis in freshwater ecosystems dealing with residual or long-term negative impacts to provide application advice for the three main identified approaches of: habitat creation, habitat restoration and biological and chemical manipulation. Project information was obtained from scientific databases and grey literature through Boolean search terms and web-scraping. Habitat creation projects, mainly targeting salmonids, had a pooled effect size of 0.8 and offsetting ratios of 1:5 with high biomass increases of over 1.4x compared to pre-establishment, associated with them. Habitat restoration projects targeted a wide range of species and communities with a pooled effect size of 0.66, offset ratios ranging from 1:1.2 to 1:4.6, and biomass increases generally > 1x compared to pre-restoration. Biological manipulation had the lowest effect size (0.51) with stocking efforts being highly variable both in terms of biomass benefits and project outcomes pointing towards stocking being mostly applicable in cases of direct fish harm not related to environmental degradation or habitat loss. Many projects targeted salmonid species and application for a wider range of species needs to be further assessed. We conclude that 1) all three assessed approaches have a potential application use for offsetting Residual or Chronic Harm with approach specific caveats. 2) time to record first benefits required one to two years with time lags needing to be accounted for in the implementation and monitoring process, 3) monitoring timeframes of more than four years and conducting pre-assessments increased projects success significantly. Keywords: Offsetting; Conservation policy; Biodiversity market; Preservation.

Citation: Theis, S.  Koops, M. and M.S. Poesch. (2022) A meta-analysis on the effectiveness of offsetting strategies for harm to freshwater fishes. Environmental Management 70(5): 793-807.

Also Read:

Theis S.*, and M.S. Poesch (2022) Current capacity, bottlenecks, and future projections for offsetting habitat loss using mitigation and conservation banking in the United States. Journal for Nature Conservation 67:126159.

*Lab members: Sebastian Theis and Mark Poesch. Check out opportunities in the lab!

Theis S.*, and M.S. Poesch (2022) Assessing conservation and mitigation banking practices and associated gains and losses in the United States. Sustainability 14: 6652.

Abstract:

Conservation and mitigation banks allow proponents to buy credits to offset negative residual impacts of development projects with the goal of No net loss (NNL) in ecosystem function and habitat area. However, little is known about the extend to which bank transactions achieve NNL. We synthesized and reviewed 12756 transactions in the United States as to meeting area and ecological equivalence (n = 4331) between approved negative impact and offset. While most transactions provided an offset equal or greater in area than the impacted area, approximately one quarter of transactions, especially targeting wetlands, did not meet ecological equivalence between impact and offset. Missing ecological equivalence was often due to the significantly increasing use of preservation, enhancement, and rehabilitation over creating new ecosystems through establishment and re-establishment. Stream transactions seldom added new ecosystem area through creation but mainly used rehabilitation to add offset benefits, in many cases leading to net loss of area. Our results suggest that best practice guidance on habitat creation as well as incentivization of habitat creation must increase in the future to avoid net loss trough bank transactions and meet the ever-accelerating global changes in land-use and the increase pressure of climate change. Keywords: Offsetting; Conservation policy; Biodiversity market; Preservation.

Citation: Theis, S.  and M.S. Poesch. (2022) Assessing conservation and mitigation banking practices and associated gains and losses in the United States. Sustainability 14: 6652.

Also Read:

Ruppert, J.L.W.*, Hogg, J., and M.S. Poesch. (2018) Community assembly and the sustainability of habitat offsetting targets in the first compensation lake in the oil sands region in Alberta, Canada. Biological Conservation 219: 138-146.

*Lab members: Sebastian Theis and Mark Poesch. Check out opportunities in the lab!

Dutra, M.C.F., Pereyra, P.E.R., Hallwass, G., Poesch, M.S. and R.A.M. Silvano. (2023). Fishers’ knowledge on trophic ecology and of the tropical ‘super fish’ Plagioscion squamosissimus in two Brazilian Amazonian rivers. Neotropical Ichthyology 21(1): e220041.

Abstract:

Fishers’ local ecological knowledge (LEK) can provide new data on fish trophic ecology. The pescada (Plagioscion squamosissimus) is among the most caught fishes in small-scale fisheries in the Brazilian Amazon. Our main goal was to evaluate the abundance, size, relevance to small-scale fisheries and trophic ecology (diet and feeding interactions) of P. squamosissimus in the Tapajós and Tocantins rivers, in the Brazilian Amazon, utilizing  data from fishers’ LEK and fish sampling. We hypothesized a higher abundance, size and more prey and predators cited by fishers of P. squamosissimus in the more pristine Tapajós River. We interviewed 61 and 33 fishers and sampled fish in nine and five sites in the Tapajós and Tocantins Rivers, respectively, in 2018. The comparison between fishers’ citations and fish sampled indicated a higher relevance of P. squamosissimus to fishers in the Tapajós River, where this fish had an average larger size and where the interviewed fishers mentioned more food items of P. squamosissimus. These results show that P. squamosissimus is a generalist fish, that is resilient to fishing and environmental pressures, as well as being important to fisheries and food security, and that LEK can provide useful insights to fisheries managers. Keywords: Offsetting; Conservation policy; Biodiversity market; Preservation.

Citation: Dutra, M.C.F., Pereyra, P.E.R., Hallwass, G., Poesch, M.S. and R.A.M. Silvano. (2023). Fishers’ knowledge on trophic ecology and of the tropical ‘super fish’ Plagioscion squamosissimus in two Brazilian Amazonian rivers. Neotropical Ichthyology 21(1):e220041.

Also Read:

Pereyra, P.E.R, Hallwas, G., Poesch, M.S. and R. Silvano (2021) ‘Taking fishers’ knowledge to the lab’: an interdisciplinary approach to understand fish trophic relationships in the Brazilian Amazon. Frontiers in Ecology and Evolution.

*Lab members: Mark Poesch. Check out opportunities in the lab!

Ponton D.E., Ruelas-Inzunza J., Lavoie R., Lescord G.L., Johnston T.A., Graydon J.A., Reichert, M., Donadt C.*, Poesch M.S., Gunn, J.A., and M. Amyot. (2022) Mercury, selenium and arsenic concentrations in Canadian freshwater fish and a perspective on human consumption intake and risk. Journal of Hazardous Materials Advances.

Abstract:

Mercury (Hg) and arsenic (As) contamination of fish may limit its human consumption  whereas selenium (Se) can potentially protect fish and consumers from their adverse effects. We related the concentrations of these elements in Canadian freshwater fish to anthropogenic activities and ecozones and compared these concentrations to risk assessment thresholds. Mercury concentrations exceeded the retail fish Canadian threshold (0.5 ppm) in 31% of all Walleye; this proportion rose to 64% in reservoirs. Reservoirs and lakes impacted by logging and urbanization presented higher fish [Hg] than other impacted systems. In mining areas, fish [Hg] were low and negatively correlated with [Se]. Se and As concentrations exceeded Canadian guidelines in 5 and 0.2% of all fish, respectively. A previously unreported negative relationship between mean [As] and [Hg] suggested an inverse consumption risk for these two elements. The ratio Se/Hg was lower than 1 for 14% of all fish and was negatively correlated with fish length. No major differences were seen among fish lengths that reached the Hg guideline and the Se/Hg threshold of 1. Using the benefit-risk value (BRV) threshold that considers Se intake, there were no limit to fish consumption. More studies are needed to assess the role of Se against Hg toxicity and adjust fish consumption guidelines accordingly.

Citation: Ponton D.E., Ruelas-Inzunza J., Lavoie R., Lescord G.L., Johnston T.A., Graydon J.A., Reichert, M., Donadt C., Poesch M.S., Gunn, J.A., and M. Amyot. (2022) Mercury, selenium and arsenic concentrations in Canadian freshwater fish and a perspective on human consumption intake and risk. Journal of Hazardous Materials Advances.

Also Read:

Donadt, C.*, Cooke, C., Graydon, J. and M.S. Poesch. (2021) Mercury bioaccumulation in stream fish from an agriculturally-dominated watershed. Chemosphere 262: 128059.

*Lab members:  Caitylyn Donadt and Mark Poesch. Check out opportunities in the lab!

Theis S.*, and M.S. Poesch (2022) Current capacity, bottlenecks, and future projections for offsetting habitat loss using mitigation and conservation banking in the United States. Journal for Nature Conservation 67:126159.

Abstract:

Habitat banking in its many iterations is an established and popular mechanism to deliver environmental offsets. The United States can look back at over 30 years of banking experience with the underlying framework and policies being consistently updated and improved. Given the increased demand in habitat banking, we provide insights into how bank area capacity is distributed across the United States for four different bank targets (wetlands, streams, multiple ecosystems, species) based on information extracted from the Regulatory In-lieu Fee and Bank Information Tracking System, as well as, estimating future capacities and area reserves through a predictive modeling approach based on data from the past 26 years. Future predictions indicate a decrease in available reserves for banks targeting wetlands or multiple ecosystems, with potential bottlenecks relating to large reserves being limited to the southeast and release schedules not catching up to the current and anticipated demand. Banks targeting species or streams are predicted to meet future demand, with species banks (conservation banks) following a different legislative and operational approach based on the listing of endangered species and pro-active approaches with anticipated future demand. Most current reserves for all four bank types are restricted to very few service areas with around one-third of all bank areas still awaiting release, limiting their availability on a broader scale. Strategic planning networks are necessary to meet future demand on a national scale and to identify areas suitable for banking or likely to experience future environmental or developmental stress.

Citation: Theis S., and M.S. Poesch (2022) Current capacity, bottlenecks, and future projections for offsetting habitat loss using mitigation and conservation banking in the United States assessed through the Regulatory In lieu fee and Bank Information Tracking System. Journal for Nature Conservation 67: 126159.

Also Read:

Theis S.*, and M.S. Poesch (2022) Assessing conservation and mitigation banking practices and associated gains and losses in the United States. Sustainability 14: 6652..

*Lab members: Sebastian Theis and Mark Poesch. Check out opportunities in the lab!

Research by Kaegan Finn highlighted by Alberta Wildlife Society Chapter

Due to the covid-19 pandemic, undergraduate student Kaegan Finn was unable to present his research at the Alberta Chapter of The Wildlife Society (ACTWS) annual general meeting. Thankfully, ACTWS has been sharing some of the research from the conference on their website. In August, ACTWS highlighted Kaegan Finn’s excellent poster. Kaegan was an undergrad conducting research in the lab. I am delighted that Kaegan was able to share his hard work. Check it out for yourself here on the ACTWS webpage (link).

CBC interviews Dr. Poesch about new article on offsetting in freshwater ecosystems (CBC News; CBC Radio)

A recent review article on compliance and ecosystem function (Theis et al. 2019) in freshwater offsets was highlighted on CBC News and CBC radio in Edmonton and Calgary

Press Play to hear the interview on Edmonton AM or click this link to get redirected to CBC Edmonton AM Radio’s webpage.

Press Play to hear the interview on Calgary’s EyeOpener or click this link to get redirected to CBC EyeOpener Radio’s webpage.