Neufeld, K.*, Watkinson, D., Tierney, K. and M.S. Poesch. (2018) Incorporating connectivity in measures of habitat suitability to assess impacts of hydrologic alteration to stream fish. Diversity and Distributions 24: 593-604.

Abstract

Hydrologic alterations are widespread in freshwater ecosystems worldwide and often detrimentally impact fish populations. Habitat suitability models are commonly used to assess these impacts, but these models frequently rely upon observed fish–habitat relationships rather than more mechanistic underpinnings. The aim of this study was to demonstrate how to incorporate swim performance into a measure of habitat connectivity at a fine scale, providing a method for assessing the availability of suitable habitat for stream fishes. We applied this technique to an endangered species, the Western Silvery Minnow Hybognathus argyritis, in the Milk River of southern Alberta, Canada. The Milk River is an augmented system, where a diversion in nearby St. Mary River augments flow by a factor >3 × (from 1–5 m3/s to 15–20 m3/s). We used laboratory measured swim performance of Western Silvery Minnow to develop a movement cost function that was used in conjunction with a habitat suitability model to assess habitat availability via a recently developed graph-theoretic metric, equivalent connected area (ECA). Stream augmentation altered not only habitat suitability but also habitat connectivity for this species. During augmentation, suitable habitat area declined by 81.3%. Changes in habitat connectivity were site dependent. Movement costs between habitat patches were lower during augmentation due to current-assisted dispersal and increased distance to patches during natural flows from dried streambeds. When movement costs were incorporated into ECA, ECA decreased by 78.0% during augmentation.With changing climate and increasing anthropogenic impacts on aquatic ecosystems, understanding how freshwater fishes relate to their habitat is critical for appropriate management. In many cases, such as the Western Silvery Minnow, mitigating habitat suitability may not be sufficient, as species are unable to reach suitable habitat. The incorporation of swim performance into habitat connectivity assessments, as carried out here, can be easily adapted to other species and situations and can improve the understanding of impacts to stream fishes and increase the effectiveness of mitigation efforts.

Citation: Neufeld, K.*, Watkinson, D., Tierney, K. and M.S. Poesch. (2018) Incorporating connectivity in measures of habitat suitability to assess impacts of hydrologic alteration to stream fish. Diversity and Distributions 24: 593-604.

Movement Cost of Western Silvery Minnow under Augment (top) and Natural (bottom) Flow Conditions

Also Read:

Theis, S.*  Castellanos D.A., Hamann A. and M.S. Poesch. (2023) Small-bodied fish species from western United States will be under severe water stress by 2040. Conservation Science and Practice: e12856.

*Lab members: Kenton NeufeldMark Poesch. Check out opportunities in the lab!

Rudolfsen, T.*, Watkinson, D. and Poesch, M.S. (2018) Morphological divergence of the Threatened Rocky Mountain sculpin (Cottus sp.) is driven by biogeography and flow regime. Aquatic Conservation: Marine and Freshwater Ecosystems 28: 78-86.

Abstract

Stream hydrology is considered the primary factor in structuring freshwater fish communities,influencing stream habitats, food resources, and life‐history characteristics. Changes in stream hydrology, from climate change and anthropogenic sources (e.g. dams, irrigation channels), are thought to have adverse impacts on many freshwater species. The Rocky Mountain Sculpin (Cottus sp.) is a threatened species in Canada. Phenotypes of Rocky Mountain Sculpin were compared across a gradient of four streams differing in stream hydrology. It was hypothesized that Rocky Mountain Sculpin would show body forms minimizing drag in higher flow environments. Using geometric morphometrics and meristic counts, body shape, fin rays, and sensory pores were compared. As hypothesized, high‐flow river systems were correlated with sculpin with more dorso‐ventrally compressed, slender body shapes that minimized resistance to flow (P<0.001). Rocky Mountain Sculpin had more pectoral fin rays in populations with higher flows than lower flows,potentially allowing them to increase friction when gripping onto the substrate (P<0.001), and more anteriorly and dorsally located head pores to improve detection of floating prey (P<0.001). Biogeographic isolation and difference in flow regime were the likely basis for the observed morphological variation. The degree to which these phenotypes become fixed is unknown;however, since phenotypic diversity parallels genetic diversity in Rocky Mountain Sculpin,there is the possibility that persistent selection of these phenotypes can make it difficult to adapt to rapidly changing habitat conditions, such as changing flow. This study emphasizes the importance of considering phenotypic and morphological variation when evaluating how best to mitigate anthropogenic stressors and their impact on freshwater fishes.

Citation: Rudolfsen, T.*, Watkinson, D. and Poesch, M.S. (2018) Morphological divergence of the Threatened Rocky Mountain sculpin (Cottus sp.) is driven by biogeography and flow regime. Aquatic Conservation: Marine and Freshwater Ecosystems 28: 78-86.

Flow Regime across the range of Rocky Mountain Sculpin

Morphological Differences Across Populations (Dorsal view) of Rocky Mountain Sculpin

Also Read:

Rudolfsen, T.*, Ruppert, J.W.R.*, Davis, C., Taylor, R., Watkinson, D. and M.S. Poesch (2019) Habitat use and hybridization between the Rocky Mountain Sculpin (Cottus sp.) and Slimy Sculpin (Cottus cognatus). Freshwater Biology 64(3): 391-404.

* Lab members: Tyana RudolfsenMark Poesch. Check out opportunities in the lab!

Veillard, M.F.*, Ruppert, J.L.W.*, Tierney, K., Watkinson, D., and M.S. Poesch. (2017) Comparative swimming and station-holding ability of the threatened Rocky Mountain Sculpin (Cottus sp.) from four hydrologically distinct rivers. Conservation Physiology 5: 1-12.

Abstract:

Hydrologic alterations, such as dams, culverts or diversions, can introduce new selection pressures on freshwater fishes, where they are required to adapt to novel environmental conditions. Our study investigated how species adapt to natural and altered stream flow, where we use the threatened Rocky Mountain Sculpin (Cottus sp.) as a model organism. We compared the swimming and station-holding performance of Rocky Mountain Sculpin from four different hydrologic regimes in Alberta and British Columbia, including the North Milk River, a system that experiences increased flows from a large-scale diversion. We measured the slip (Uslip) and failure (Uburst) velocities over three constant acceleration test trials. Uslipwas defined as the point at which individuals required the addition of bursting or swimming to maintain position. Uburst was defined as the point at which individuals were unable to hold position in the swimming chamber through swimming, bursting or holding techniques without fully or partially resting on the electrified back plate. We found individuals from the Flathead River in British Columbia (with the highest natural flow) failed at significantly higher Uburstvelocities than fish from the southern Albertan populations. However, there was no relationship between peak hydrologic flow from the natal river and Uburst or Uslip. Further, Uburst velocities decreased from 51.8 cm s−1 (7.2 BL s−1) to 45.6 cm s−1 (6.3 BL s−1) by the third consecutive test suggesting the use of anaerobic metabolism. Uslip was not different between trials suggesting the use of aerobic metabolism in station-holding behaviours (Uslip). Moreover, we found no significant differences in individuals from the altered North Milk River system. Finally, individual caudal morphological characteristics were related to both slip and failure velocities. Our study contributes to the conservation of Rocky Mountain Sculpin by providing the first documentation of swimming and station-holding abilities of this benthic fish.

CitationVeillard, M.F.*, Ruppert, J.L.W.*, Tierney, K., Watkinson, D., and Poesch, M.S. 2017. Comparative swimming and station-holding ability of the threatened Rocky Mountain Sculpin (Cottus sp.) from four hydrologically distinct rivers. Conservation Physiology 5: 1-12.

Difference in Swim Performance Across Populations of Rocky Mountain Sculpin. Shown are Tukey contrasts (estimate +/- 95% confidence intervals) between rivers (top row) and constant acceleration trial (CAT) numbers (bottom row) for failure (Uburst) and slip (Uslip) velocities from linear effects model. Significant differences are noted in yellow; Rivers are abbreviated as: Flathead River (FH), St. Mary River (SM), Lee Creek (LC) and North Milk River (NM).

Also Read:

Rudolfsen, T.*, Watkinson, D. and Poesch, M.S. (2018) Morphological divergence of the Threatened Rocky Mountain sculpin (Cottus sp.) is driven by biogeography and flow regime. Aquatic Conservation: Marine and Freshwater Ecosystems 28: 78-86.

*Lab members: Marie VeillardJonathan RuppertMark Poesch. Check out opportunities in the lab!

Neufeld, K.R. (2016) Improving our ability to assess the impacts of hydrologic alteration on stream fishes: An interdisciplinary approach to assess the Threatened Western Silvery Minnow Hybognathus argyritis in Canada

Thesis title: Improving our ability to assess the impacts of hydrologic alteration on stream fishes: An interdisciplinary approach to assess the Threatened Western Silvery Minnow Hybognathus argyritis in Canada

Author: Kenton Neufeld

Abstract

Human induced hydrologic alteration is ubiquitous in North American riverscapes. These alterations have been shown to impact fishes by modifying habitats, influencing movement patterns and driving changes in community structure. Understanding these impacts is an essential first step for the conservation of fish in these systems. We use Western Silvery Minnow Hybognathus argyritis and the Milk River of southern Alberta as a model system to develop and apply an interdisciplinary approach to assess the impacts of hydrologic alteration on capture efficiency and habitat suitability of stream fishes. The capture efficiency of sampling gear is a key component of many fish research programs, and understanding the link between hydrology and capture efficiency is critical to accurately assessing the impacts of hydrologic alterations on fish. We measured seine net capture efficiency in the Milk River, and investigated the effects of flow, species, and habitat variables on capture efficiency using mixed effects models. Flow state was an important driver of capture efficiency, which increased ~5 % during augmented flow compared to natural flow. Habitat suitability assessments are commonly used to determine the impacts of hydrologic alteration on fishes, but often rely on poorly understood relationships between fish and their habitat. We used the swimming performance of Western Silvery Minnow to measure the cost of movement between habitat patches in the Milk River and incorporated this cost into a graph theoretic metric of habitat suitability (Equivalent Connected Area). Compared to augmented flow, the proportion of suitable area was ~ 475 % higher during natural flow, the mean cost of movement between habitat patches was ~ 13 % higher and Equivalent Connected Area increased ~ 0.119 (95% C.I. 0.109-0.130). By including flow as a variable in modelling capture efficiency and swimming performance as a mechanism defining habitat suitability, we show the utility and benefits of taking an interdisciplinary approach to assessing the impacts of hydrologic alteration on stream fishes.

Veillard, M. (2016) Investigating fine-scale movement patterns and comparative swimming performance of the newly identified and threatened Rocky Mountain Sculpin (Cottus sp.) across its Canadian distribution

Thesis Title: Investigating fine-scale movement patterns and comparative swimming performance of the newly identified and threatened Rocky Mountain Sculpin (Cottus sp.) across its Canadian distribution

Author: Marie Veillard

Abstract

Cumulative anthropogenic impacts to the riverscape, including hydrologic alteration, have contributed to an escalated number of freshwater fish species at risk in North America. Species dispersal is an important mechanism underlying many ecological processes. Understanding the scale at which species carry out their life history can inform both conservation actions and recovery potential. Our study used the recently-identified Rocky Mountain Sculpin (Cottus sp.), a species federally listed as threatened, to investigate the (1) fine-scale movement potential and (2) comparative swimming ability of adults throughout their restricted Canadian distribution. Rocky Mountain Sculpin are a small-bodied, cryptic benthic species that utilizes interstitial spaces for shelter. To assess the fine-scale movement potential of Rocky Mountain Sculpin, I conducted a mark-recapture study on Lee Creek, Alberta using Passive Integrated Transponder (PIT) and Visible Implant Elastomer (VIE) tags. I assessed the abiotic and biotic factors influencing movement using Boosted Regression Tree models. In this study I found that 89% of sculpins moved less than 30 meters, while a few individuals moved up to 240 meters. Biotic factors indicated sculpins moved from high to low abundances of fish due to intra- and inter- specific competition from congeners and benthic competitors. The most important abiotic factor contributing to movement was abundance of cobble substrate at destination transects. Interestingly, there was a strong interaction between biotic and abiotic components indicating the importance of focusing restoration efforts on both biotic and abiotic factors. To address the second objective, comparative fish swimming performance and recovery potential was assessed in a laboratory on individuals sourced from drastically different hydrologic regimes in Alberta and British Columbia, including the flow augmented, North Milk River. Permutational ANOVAs were used to compare swimming performance between rivers using two aspects of swimming ability: (1) slip velocity, the point at which fish slipped and transitioned into swimming and 2) failure velocity, the point at which fish could no longer hold position against the flow without resting. While we expected swimming ability to be correlated with natal hydrologic regimes, our study found there were no differences in failure or slip velocity between rivers. However, resting oxygen uptake prior to swim tests was significantly higher for fish from the augmented, North Milk River, indicating there may be a physiological response to flow augmentation. Over repeated exercise, fish failure velocity decreased from 7.45 ± 3.10 body lengths per second (BL s-1) in the first test to 6.18 ± 2.56 BL s-1 by the third test suggesting the use of anaerobic metabolism to power swimming performance of this small-bodied species. Linear mixed-effects models developed using body characteristics showed caudal morphology to influence both failure and slip velocities, while body height was negatively correlated to slip velocity, demonstrating morphological selection for benthic living. Taken together, these studies suggest that while large-scale flow augmentation may come at an energetic cost to sculpins, fine-scale developments may be equally as detrimental to this dispersal-limited species. Conservation for this species may then require both fine-scale and regional management.

Neufeld, K.*, Watkinson, D., and Poesch, M.S. (2016) The effect of hydrologic alteration on capture efficiency of freshwater fishes in a highly modified Prairie stream: Implications for bio-monitoring programs. River Research and Applications 32: 975-983.

Citation: Neufeld, K.*, Watkinson, D., and Poesch, M.S. (2016) The effect of hydrologic alteration on capture efficiency of freshwater fishes in a highly modified Prairie stream: Implications for bio-monitoring programs. River Research and Applications 32: 975-983.

Abstract

Hydrology is a defining feature of aquatic ecosystems. Changes in stream hydrology, due to climate change, water use and impoundment, have been shown to negatively affect fish populations. Assessing changes in hydrology and its effect on fish populations and communities remains an important consideration for aquatic monitoring programmes across the globe. In this study, we used the Milk River in southern Alberta as a model system to understand how hydrologic alteration may also affect capture probabilities of fishes and impact instream monitoring programmes. The Milk River receives the majority of its April to October flow via an inter-basin transfer from the St. Mary River, drastically altering the hydrologic regime and instream habitats for fishes during this augmentation period. We estimated species-specific seine net capture probabilities of fishes in the Milk River during augmentation and natural flow periods using depletion surveys in both open and enclosed sites. Using habitat data collected during the seine surveys, linear mixed-effects models were created with capture efficiency as the dependent variable. Models were compared using corrected Akaike’s information criterion, and the relative contributions of the different variables to the top models were examined. We found that species and flow characteristics, such as water velocity and the state of augmentation, played a prominent role in many of the top models explaining variation in capture efficiency. These results demonstrate that changes to stream hydrology clearly have the potential to impact gear efficiency and individual species assessments. Stream monitoring programmes, which aim to determine long-term trends in aquatic ecosystem health, need to be mindful that any change to stream hydrology—from climate change, fragmentation or stream alteration—can alter capture efficiency of the sampling gear and inadvertently alter species-specific trends.

*Lab members: Kenton NeufeldMark Poesch. Check out opportunities in the lab!

Seine net capture probability for Flathead Chub, Longnose Dace, Sucker species, and Western Silvery Minnow in the Milk River in southern Alberta during augmented and natural flow conditions, and from open and closed surveys. 

 

Maitland, B. (2015) Stream Crossings in the Western Boreal Forest: Assessing Impacts and Prioritizing Restoration for Native Freshwater Fishes

Thesis Title: Stream Crossings in the Western Boreal Forest: Assessing Impacts and Prioritizing Restoration for Native Freshwater Fishes

AuthorBryan M. Maitland

Abstract

Growing anthropogenic development in response to rising demands for natural resources is a major concern for freshwater fish, particularly in resource rich regions such as Canada’s boreal forest. Expanding networks of industrial resource roads has led to the installation of hundreds of thousands of stream-crossing structures that are becoming increasingly common anthropogenic features on North American riverscapes. These structures can reduce available fish habitat, deteriorate instream habitat, and disrupt ecological connectivity by acting as barriers to fish and aquatic organism movement. My objectives were (i) to determine the extent to which commonly installed stream crossings affect stream fish communities in a boreal forest watershed, and (ii) to assess the application of operational research tools that utilize an optimization framework for mitigating the effects of fragmentation on native freshwater fish and informing restoration planning in the boreal forest. I used mixed-effects modeling and multivariate analyses to determine the effects of stream crossings from 33 culverted, bridged, and reference streams in an industrializing region of the boreal forest in west-central Alberta. Instream habitat characteristics such as mean depth, percent fines, and turbidity showed significant between- as well as within-stream differences among stream crossings. I found that the majority of fish species exhibited significantly lower densities (n·m -2) in upstream habitats as compared to downstream habitats, including a significant reduction in Slimy Sculpin densities in streams with culverts compared to reference streams. Multivariate tests showed that fish assemblages differ as a function of stream type and location. The prioritization method utilized in this study suggests that large gains in potential connectivity could be realized with a moderate investment (~$200K to $500K). I found that the operational research tool can be used to develop cost-benefit curves from the study watersheds, which can be used to minimize overall restoration costs to achieve particular management objectives in watersheds of interest, as well as provide defendable evidence for budget planning to regulators and decision-makers. Additionally, varying model parameters that account for species-specific differences in habitat use (e.g. dispersal distance) affected prioritization solutions, and should be considered in future prioritization analyses. In addition to effecting fish passage and stream connectivity, my results suggest that culverts may also be altering fish habitat, further contributing to large-scale changes in stream fish communities in the boreal forest. Further, my research highlights the efficacy of a novel, easy to use optimization-based barrier prioritization toolset that has minimal data requirements, is applicable to both stream-resident and long-range migratory species, and significantly reduces the mathematical and technical expertise needed to perform relatively complex optimization analyses.