Thayer, D. (2016) Identifying seasonal Lake Sturgeon (Acipenser fulvescens) movement patterns and habitat selection in the South Saskatchewan River Basin

Thesis Title: Identifying seasonal Lake Sturgeon (Acipenser fulvescens) movement patterns and habitat selection in the South Saskatchewan River Basin

Author: Donnette Thayer

Abstract

Lake Sturgeon (Acipenser fulvescens Rafinesque 1817) have experienced population declines throughout their range. In Alberta, low density age-class distributions, irregular recruitment, critically low spawning potential ratios and other factors led to a 2007 designation of “Threatened” for this species under the Provincial Wildlife Act. As a protected species, efforts to develop a comprehensive recovery strategy require an understanding of species’ biology, behavior, and critical habitat requirements. My objectives were to a) identify movement behaviors and habitat changes before and after an extreme flood event, and b) ascertain overwintering movement behaviors and habitat selection of South Saskatchewan River Basin Lake Sturgeon. Multiple-receiver acoustic telemetry was used to obtain triangulated, fine-scale movement patterns at the confluence of the Bow and Oldman rivers, a potential critical spawning habitat site, before, during and after an extreme flood, and at a study site on the South Saskatchewan River known to be critical overwintering habitat, before, during, and after the ice-on period. Substrate analysis was performed pre- and post-flood for Grand Forks, and substrate, bottom velocity, and depth analyses were performed for the South Saskatchewan River overwintering study site. In the extreme flood event study, movement behaviors were captured by receivers positioned to triangulate movements and provide positions at a fine scale. Receivers had been deployed to assess spawning behavior when the 2013 Alberta ‘Flood of Floods’ occurred, providing an opportunity to document fine-scale Lake Sturgeon movement behaviors before, during and after an extreme disturbance event. Lake Sturgeon showed a tendency to avoid high water velocity areas. Increases in flow rate showed a significant negative relationship to mean positional distance from shore. Substrate assessment prior to and following the flood showed a significant change in substrate composition. Mean gravel- and larger-substrate area increased, providing evidence that high flow rates in 2013 and 2014 exposed larger particle fluvial substrate. Complexity as measured by patch density increased, indicating a measureable overall increase in heterogeneity. Lake Sturgeon benefitted from improved spawning habitat following the extreme flood by gaining larger, cleaner substrate with more complexity. Although extreme flood events may be costly to human life and infrastructure, they may be ecologically beneficial to some freshwater organisms, particularly plesiomorphic, long-lived species such as Lake Sturgeon whose survival has depended upon a capability to adapt to erratic and occasionally extreme peak flow events. In the overwintering study, fine-scale movements by adult and juvenile Lake Sturgeon were tracked for a previously identified overwintering habitat in the South Saskatchewan River using acoustic telemetry from late October 2013 through April 2014 for a 1.5 kilometer reach of the South Saskatchewan River identified in a previous study as overwintering habitat. Period-segmented movement rates, depth selection, aggregation behavior and preferential overwintering habitat selection by adult and juvenile Lake Sturgeon were evaluated for 23-26 individuals (20-23 adults and 3 juveniles, depending on residency during period assessed – individuals not present during all segments were excluded) detected within the study area. Environmental parameters included depth, depth standard deviation (rugosity), bottom velocity, bottom velocity standard deviation, and substrate type (silt, sand, and gravel or larger substrate). Boosted regression tree (BRT) analyses were performed to identify habitat selection for Lake Sturgeon for period-aggregated core (50th percentile) and range (95th percentile) positions. Movement rates paralleled temperature variation, becoming highly restricted during periods of deepest cold. Increased aggregation was also noted for these periods. The deepest habitat positions occurred during ice formation and breakup. Depth and bottom velocity were the most important variables used to identify sturgeon habitat for all periods assessed. Since Lake Sturgeon display site fidelity and aggregation behaviors independent of resource availability, winter habitat may limit the population. While spawning habitat is crucial to ensuring successful recruitment, data suggests that a substantial portion of the population spends the greater part of the year in overwintering locations, making this habitat potentially more critical to the survival of the population as a whole than any other habitat. If winter habitat is degraded or otherwise compromised, it could hinder species recovery, and should be considered critical habitat, receiving appropriate protection. This was the first study to use fine-scale acoustic telemetry analysis of movement behavior and habitat selection for a Lake Sturgeon population occupying fluvial winter habitat.

Poesch, M.S., Chavarie, L., Chu, C., Pandit, S.N.*, and W. Tonn. (2016) Climate change impacts on freshwater fishes: A Canadian perspective. Fisheries 41(7): 385-391.

Abstract:

Current and projected patterns of global climate change are a major concern to freshwater fisheries in Canada. The magnitude of the impacts of climate change vary among species and ecoregions. The latest climate change scenario projections for Canada suggest that by 2050 temperatures will increase between about 4.9°C ± 1.7°C (average mean ± standard deviation) and 6.6°C ± 2.3°C under the Representative Concentration Pathways (RCPs) 2.6 and 8.5 emission scenarios, respectively. These changes will have an important influence on the physiology, distribution, and survival of freshwater fishes, as well as other ecological processes in direct, indirect, and complex ways. Here we provide a perspective from the Canadian Aquatic Resources Section on the impacts of climate change to freshwater fishes. Given the geographic size and diversity of landscapes within Canada, we have divided our perspective into three regions: eastern, western, and northern Canada. We outline the impacts of climate change to these regions and outline challenges for fisheries managers. Because climate change does not operate in isolation of other environmental threats, nor does it impact species in isolation, we suggest improved inter jurisdictional integration and the use of an adaptive and ecosystem-based approach to management of these threats.

Citation: Poesch, M.S., Chavarie, L., Chu, C., Pandit, S.N.*, and W. Tonn. (2016) Climate change impacts on freshwater fishes: A Canadian perspective. Fisheries 41(7): 385-391.

List of species that have potential to extend their range and/or abundance northward into the Arctic, with some biological characteristics related to expansion of their existing ranges.

Also Read:

Theis, S.*  Castellanos D.A., Hamann A. and M.S. Poesch. (2022) Exploring the potential role of habitat banks in preserving freshwater biodiversity and imperiled species in the United States. Biological Conservation 273: 109700.

*Lab members: Shubha PanditMark Poesch. Check out opportunities in the lab!

Neufeld, K.*, Watkinson, D., and Poesch, M.S. (2016) The effect of hydrologic alteration on capture efficiency of freshwater fishes in a highly modified Prairie stream: Implications for bio-monitoring programs. River Research and Applications 32: 975-983.

Citation: Neufeld, K.*, Watkinson, D., and Poesch, M.S. (2016) The effect of hydrologic alteration on capture efficiency of freshwater fishes in a highly modified Prairie stream: Implications for bio-monitoring programs. River Research and Applications 32: 975-983.

Abstract

Hydrology is a defining feature of aquatic ecosystems. Changes in stream hydrology, due to climate change, water use and impoundment, have been shown to negatively affect fish populations. Assessing changes in hydrology and its effect on fish populations and communities remains an important consideration for aquatic monitoring programmes across the globe. In this study, we used the Milk River in southern Alberta as a model system to understand how hydrologic alteration may also affect capture probabilities of fishes and impact instream monitoring programmes. The Milk River receives the majority of its April to October flow via an inter-basin transfer from the St. Mary River, drastically altering the hydrologic regime and instream habitats for fishes during this augmentation period. We estimated species-specific seine net capture probabilities of fishes in the Milk River during augmentation and natural flow periods using depletion surveys in both open and enclosed sites. Using habitat data collected during the seine surveys, linear mixed-effects models were created with capture efficiency as the dependent variable. Models were compared using corrected Akaike’s information criterion, and the relative contributions of the different variables to the top models were examined. We found that species and flow characteristics, such as water velocity and the state of augmentation, played a prominent role in many of the top models explaining variation in capture efficiency. These results demonstrate that changes to stream hydrology clearly have the potential to impact gear efficiency and individual species assessments. Stream monitoring programmes, which aim to determine long-term trends in aquatic ecosystem health, need to be mindful that any change to stream hydrology—from climate change, fragmentation or stream alteration—can alter capture efficiency of the sampling gear and inadvertently alter species-specific trends.

*Lab members: Kenton NeufeldMark Poesch. Check out opportunities in the lab!

Seine net capture probability for Flathead Chub, Longnose Dace, Sucker species, and Western Silvery Minnow in the Milk River in southern Alberta during augmented and natural flow conditions, and from open and closed surveys. 

 

Alberta Conservation Association funds alpine fisheries research

The Alberta Conservation Association provided a grant to help research the impact of stocking of non-native trout on alpine ecosystems. This project is being led by MSc student Allison Banting with the help of Dr. Mark Taylor and Rolf Vinebrooke. Thanks ACA for your continued support of the PoeschLab.

Maitland, B. (2015) Stream Crossings in the Western Boreal Forest: Assessing Impacts and Prioritizing Restoration for Native Freshwater Fishes

Thesis Title: Stream Crossings in the Western Boreal Forest: Assessing Impacts and Prioritizing Restoration for Native Freshwater Fishes

AuthorBryan M. Maitland

Abstract

Growing anthropogenic development in response to rising demands for natural resources is a major concern for freshwater fish, particularly in resource rich regions such as Canada’s boreal forest. Expanding networks of industrial resource roads has led to the installation of hundreds of thousands of stream-crossing structures that are becoming increasingly common anthropogenic features on North American riverscapes. These structures can reduce available fish habitat, deteriorate instream habitat, and disrupt ecological connectivity by acting as barriers to fish and aquatic organism movement. My objectives were (i) to determine the extent to which commonly installed stream crossings affect stream fish communities in a boreal forest watershed, and (ii) to assess the application of operational research tools that utilize an optimization framework for mitigating the effects of fragmentation on native freshwater fish and informing restoration planning in the boreal forest. I used mixed-effects modeling and multivariate analyses to determine the effects of stream crossings from 33 culverted, bridged, and reference streams in an industrializing region of the boreal forest in west-central Alberta. Instream habitat characteristics such as mean depth, percent fines, and turbidity showed significant between- as well as within-stream differences among stream crossings. I found that the majority of fish species exhibited significantly lower densities (n·m -2) in upstream habitats as compared to downstream habitats, including a significant reduction in Slimy Sculpin densities in streams with culverts compared to reference streams. Multivariate tests showed that fish assemblages differ as a function of stream type and location. The prioritization method utilized in this study suggests that large gains in potential connectivity could be realized with a moderate investment (~$200K to $500K). I found that the operational research tool can be used to develop cost-benefit curves from the study watersheds, which can be used to minimize overall restoration costs to achieve particular management objectives in watersheds of interest, as well as provide defendable evidence for budget planning to regulators and decision-makers. Additionally, varying model parameters that account for species-specific differences in habitat use (e.g. dispersal distance) affected prioritization solutions, and should be considered in future prioritization analyses. In addition to effecting fish passage and stream connectivity, my results suggest that culverts may also be altering fish habitat, further contributing to large-scale changes in stream fish communities in the boreal forest. Further, my research highlights the efficacy of a novel, easy to use optimization-based barrier prioritization toolset that has minimal data requirements, is applicable to both stream-resident and long-range migratory species, and significantly reduces the mathematical and technical expertise needed to perform relatively complex optimization analyses.

Neufeld, K.*, Blair, S., and Poesch, M.S. (2015) Retention and stress effects of visible implant tags when marking Western Silvery Minnow Hybognathus argyritis and its application to other cyprinids (family Cyprinidae). North American Journal of Fisheries Management 35: 1070-1076.

Abstract:

Visible implant tags are commonly used in fisheries research to mark individuals or batches of fish as part of movement and mark–recapture studies. To be effective, these tags generally need to have high retention rates and little impact on the behavior or physiology of the marked individuals. We tested the retention rates of both visible implant elastomer (VIE) and visible implant alphanumeric (VIA) tags in 80–139-mm Western Silvery Minnow Hybognathus argyritis over a 104-d period. We also measured plasma cortisol and lactate to determine the impact of tagging on stress levels. We found that VIE tags had 100% retention and did not cause a significant increase in plasma cortisol levels, though plasma lactate levels were elevated in VIE treatment groups. Overall, VIE tags were found to be suitable for marking Western Silvery Minnow and similar species. Visible implant alphanumeric tags had 36% retention over 104 d and did not cause significant increases in plasma cortisol, though plasma lactate was elevated in the treatment group with both VIE and VIA tags. Given the high retention rates and low stress effects, VIE tags appear to be more beneficial for use with Western Silvery Minnow and similar-sized cyprinids.

Citation: Neufeld, K.*, Blair, S., and Poesch, M.S. 2015. Retention and stress effects of visible implant tags when marking Western Silvery Minnow Hybognathus argyritis and its application to other cyprinids (family Cyprinidae). North American Journal of Fisheries Management 35: 1070-1076.

Average Western Silvery Minnow (a) plasma cortisol and (b) plasma lactate concentrations for the various tagging treatments (VIE – Visual Implant Elastomer, VIA – Visual Implant Alpha, VIE+VIE – both) for days 1, 54 and 103/104. Error bars represent SD.

Also Read:

Fischer, S.M.*, Ramaza, P., Simmons, S., Poesch, M.S. and M.A. Lewis. (2023) Boosting propagule transport models with individual-specific data from mobile apps. Journal of Applied Ecology 60(5): 934-949.

*Lab members: Kenton NeufeldMark Poesch. Check out opportunities in the lab!

Poesch, M.S., Lawrie, D., Tu, C., Jackson, D.A., and N.E. Mandrak (2012) Developing local and regional population estimates for an endangered freshwater minnow, the redside dace (Clinostomus elongatus), in Canada. Aquatic Conservation 22: 47-57.

Abstract:

The Laurentian Great Lakes have undergone drastic declines in freshwater fishes, with 22 species having become extinct in the past century and many more currently at risk. One such species is the endangered minnow, the redside dace (Clinostomus elongatus), which is undergoing severe declines across its entire range. Depletion and mark–recapture surveys were used to quantify population estimates of redside dace at several spatial scales (pool, reach and catchment) across several Great Lakes tributaries in Canada. There was large variation in the local population estimates and the rate of occurrence of redside dace populations. In some cases, such as Gully Creek, a Lake Huron tributary, redside dace were widespread (9/10 of pools) but in low abundances (13.5 individuals per pool ± 5.09 ). In other cases, such as in the Don River, redside dace were highly localized (2/27 pools) but in relatively high abundance (99.2 individuals/pool ± 18.1). Extrapolated population estimates at the catchment scale showed that three of the five study populations were below conservative estimates needed for long-term population viability. Differences in redside dace populations were driven by adjacent land-use. Post-hoc analyses revealed strong negative associations between population estimates and impervious land-use (i.e. urbanization) at both the pool and sub-catchment level. Immediate recovery actions that will focus on eliminating chronic and episodic impacts of adjacent land-use and improve connectivity are needed to help ensure redside dace, like many freshwater species in the Laurentian Great Lakes, remain a species at risk of – rather than facing – extinction.

Citation: Poesch, M.S., Lawrie, D., Tu, C., Jackson, D.A., and N.E. Mandrak. 2012. Developing local and regional population estimates for an endangered freshwater minnow, the redside dace (Clinostomus elongatus), in Canada. Aquatic Conservation 22: 47-57. 

Also Read:

Neufeld, K.*, Watkinson, D., and Poesch, M.S. (2016) The effect of hydrologic alteration on capture efficiency of freshwater fishes in a highly modified Prairie stream: Implications for bio-monitoring programs. River Research and Applications 32: 975-983.

Schwalb, A.J., Cottenie, K., Poesch, M.S., and J. Ackerman (2011) Dispersal limitation in unionid mussels and implications for their recovery. Freshwater Biology 56: 1509-1518.

Abstract:

Freshwater unionid mussels are a highly imperilled group. Their dispersal abilities depend on the availability and the movement of host fish on which their parasitic mussel larvae develop. We examined the relationship between the dispersal abilities of unionid mussels and their conservation status on a regional (SW Ontario) scale and their distribution and abundance on a catchment scale (Sydenham River, SW Ontario) by determining host specificity and estimating the dispersal abilities of mussels on fish from a review of the literature. On the regional scale, we found that mussels with the most precarious conservation status relied on host fish with short movement distances, whereas vulnerable and more secure mussel species had host fish with 2–3 orders of magnitude larger movement distances. We were not able to detect a clear pattern on the catchment scale. Our results suggest that limited dispersal by host fish affects the abundance and distribution of unionid mussels and ultimately their conservation status on a regional scale. Information on dispersal limitations because of differences in host fish communities should be included in conservation and management decisions to ensure connectivity and maintain functioning mussel metacommunities.

Citation: Schwalb, A.J., Cottenie, K., Poesch, M.S., and Ackerman, J. 2011. Dispersal limitation in unionid mussels and implications for their recovery. Freshwater Biology 56: 1509-1518. 

Also Read:

Maitland, B.M.*, Anderson, A. and Poesch, M.S. (2016) Prioritising culvert removals to restore habitat for at-risk salmonids in the Boreal forest. Fisheries Management and Ecology 23: 489-502.