Walker, S., Poesch, M.S. and D. A. Jackson. (2008) Functional rarefaction: Estimated functional diversity from field data. Oikos 117(2): 286-296.

Abstract:

Studies in biodiversity-ecosystem function and conservation biology have led to the development of diversity indices that take species’ functional differences into account. We identify two broad classes of indices: those that monotonically increase with species richness (MSR indices) and those that weight the contribution of each species by abundance or occurrence (weighted indices). We argue that weighted indices are easier to estimate without bias but tend to ignore information provided by rare species. Conversely, MSR indices fully incorporate information provided by rare species but are nearly always underestimated when communities are not exhaustively surveyed. This is because of the well-studied fact that additional sampling of a community may reveal previously undiscovered species. We use the rarefaction technique from species richness studies to address sample-size-induced bias when estimating functional diversity indices. Rarefaction transforms any given MSR index into a family of unbiased weighted indices, each with a different level of sensitivity to rare species. Thus rarefaction simultaneously solves the problem of bias and the problem of sensitivity to rare species. We present formulae and algorithms for conducting a functional rarefaction analysis of the two most widely cited MSR indices: functional attribute diversity (FAD) and Petchey and Gaston’s functional diversity (FD). These formulae also demonstrate a relationship between three seemingly unrelated functional diversity indices: FAD, FD and Rao’s quadratic entropy. Statistical theory is also provided in order to prove that all desirable statistical properties of species richness rarefaction are preserved for functional rarefaction.

Citation: Walker, S., Poesch, M.S. and Jackson, D.A. 2008. Functional rarefaction: Estimated functional diversity from field data. Oikos 117(2): 286-296.

Also Read:

Banting, A.*, Vinebrooke, R., Taylor, M., Carli, C. and M.S. Poesch. (2021) Impacts of a regionally-native predator on littoral macrobenthos in fishless mountain lakes: implications for assisted colonization. Conservation Science and Practice 3(2): e344.

Poesch, M.S., Mandrak, N.E., and R. L. McLaughlin (2007) The effectiveness of two common sampling methods for sampling imperiled freshwater fishes. Journal of Fish Biology 70: 691-708.

Abstract:

This study tested the hypothesis that the most common gear type used to sample fishes in wadeable systems, electrofishing, was more effective than another commonly used gear type, seining, for sampling fish species at risk. Five predictions were tested. At sites where species at risk were detected, (1) the probability of detecting the species at risk, (2) the probability of only one gear type detecting the species at risk and (3) the estimated catch per unit effort of the species at risk, was as high as, or higher, when using electrofishing than when using a seine. (4) The number of sample sites required to detect a species at risk within a watershed and (5) the number of subsections required to detect a species at risk within a site, were as low as, or lower, using electrofishing than the number required using a seine. Based on analyses of these measurements, electrofishing was a more effective gear type than seining for sampling fish species at risk, irrespective of the unit (presence or absence or catch per unit effort) or scale of measurement (watershed or site level). Dissolved oxygen, turbidity, specific conductivity and nitrate concentrations were measured at each site and did not account for the between gear differences. Selection of sampling gear can be a fundamental consideration for the assessment of fish species at risk, where, unlike common species, they may be particularly influenced by small population sizes, restricted geographic ranges and narrow habitat preferences. Resource managers must weigh differences in the risks of injury of fish species at risk against differences in the effectiveness of each gear type when deciding between gear types and the utility of the assessments they represent.

Citation: Poesch, M.S., Mandrak, N.E., and McLaughlin, R.L. 2007. The effectiveness of two common sampling methods for sampling imperiled freshwater fishes. Journal of Fish Biology 70: 691-708.

Also Read:

Neufeld, K.*, Watkinson, D., and Poesch, M.S. (2016) The effect of hydrologic alteration on capture efficiency of freshwater fishes in a highly modified Prairie stream: Implications for bio-monitoring programs. River Research and Applications 32: 975-983.

Scott, R.J., Poesch, M.S., Noakes, D.L.G., and F.W.H. Beamish (2005) Effects of exotic salmonids on juvenile Atlantic salmon behavior. Ecology of Freshwater Fish 14: 283-288.

Abstract:

We examined the effects of two salmonid species, chinook salmon (Oncorhynchus tschwaytscha) and brown trout (Salmo trutta), both exotic species to Lake Ontario, on behaviour and foraging success of juvenile Atlantic salmon (S. salar), a native species to Lake Ontario, in an artificial stream. We found that both exotic species have effects on Atlantic salmon behaviour, but that neither had an effect on foraging success. These results may explain why the Atlantic salmon re-introduction programme in Lake Ontario has had little success, as more than 3 million exotic salmonids are released in Lake Ontario streams annually.

Citation: Scott, R.J., Poesch, M.S., Noakes, D.L.G., & Beamish, F.W.H. 2005. Effects of exotic salmonids on juvenile Atlantic salmon behavior. Ecology of Freshwater Fish 14: 283-288.

Also Read:

Medinski, N.A.*, Maitland, B.M.*, Jardine, T.D., Drake, D.A.R. and M.S. Poesch (2022) A catastrophic coal mine spill in the Athabasca River watershed induces isotopic niche shifts in stream biota including an endangered rainbow trout ecotype. Canadian Journal for Fisheries and Aquatic Sciences 79(8): 1321-1334.