Pandit, S.*, Poesch, M. S., Kolasa, J., Pandit, L. K., Ruppert, J. L. W., and E. Enders (In Press). Long-term evaluation of the impact of urbanization on native and non-native fish assemblages. Aquatic Invasions.

Urbanization can homogenize species composition across aquatic ecosystems by introducing disturbance that can destroy the habitat of unique endemic or native species and/or create an alternative habitat for the few species able to adapt to these conditions. Here, we use a long-term decadal dataset (1971 to 2010) on the fish species presence in 16 subwatersheds within three watersheds in the Greater Toronto Area, Canada; and assessed whether fish communities have changed over time for three categories of species assemblages: (1) native species community only, (2) nonnative species community only, and (3) a combination of all species (all species). We considered three significant variables for which data exist: catchment area, distance to a species pool source, and percentage of urban cover (i.e., percent of the impervious area within a catchment) to determine whether these variables alter species richness. We used the nestedness metric to evaluate the degree of interdependence among site assemblages and site compositional degradation over time to contrast trends in native and non-native sets of species. Overall, nestedness temperatures (NTs, which is ‘heat of disorder’) for native fish is lower [T=11.01] than nonnative fish assemblages [24.47], indicating that native fish are more nested than non-native fish species assemblages. Among the four decadal scales, the native species community showed high nestedness during the 1970s, which declined later (the 2010s), and an opposite trend occurred for the non-native species community. Although total species richness increased over time, native richness decreased with urbanization, with non-native species richness increasing and overcompensating native losses. The study further suggests that the non-native fish communities become patchier (less predictable and less nested). This implies that further changes in fish communities are likely, and the patchiness may isolate communities making them more prone to perturbations.

Citation: Pandit, S., Poesch, M. S., Kolasa, J., Pandit, L. K., Ruppert, J. L. W., and E. Enders (In Press). Long-term evaluation of the impact of urbanization on native and non-native fish assemblages. Aquatic Invasions.

Also Read:

Theis S.*, Cartwright L., Chreston A., Coey B., Graham B., Little D., Poesch M.S., Portiss R., Wallace A. and J. L. W. Ruppert (In Press). A multi-metric index for assessing two decades of community responses to broad scale shoreline enhancement and restoration along the Toronto waterfront. Aquatic Conservation: Marine and Freshwater Ecosystems.

*Lab members: Shubha Pandit and Mark Poesch. Check out opportunities in the lab!

Theis S.*, Cartwright L., Chreston A., Coey B., Graham B., Little D., Poesch M.S., Portiss R., Wallace A. and J. L. W. Ruppert (2024). A multi-metric index for assessing two decades of community responses to broad scale shoreline enhancement and restoration along the Toronto waterfront. Aquatic Conservation: Marine and Freshwater Ecosystems 34: e24141.

Abstract:

The twin crises of climate change and biodiversity loss requires Notably, as one of the largest projects of its kind in the Great Lakes region (~500 hectares), extensive aquatic enhancement and restoration has been completed to support terrestrial and aquatic ecosystems with the intent of improving overall ecosystem health and biodiversity. Using twenty years of fish community data, we examined ecosystem responses in a spatio-temporal context across wetland and embayment ecotypes. Fish communities were assessed through a multi-metric index based on species life-history traits and habitat association. Generally, fish communities along the waterfront have transitioned from cool and coldwater pelagic species. Further, there are higher proportions of generalists and a higher proportion of native warmwater species, many of them piscivores, associated with cover and vegetation, that tend to meet community targets. Notably, these changes are more pronounced at Tommy Thompson Park compared to the rest of the waterfront, where communities approach natural reference levels. This result indicates the benefits and effectiveness of the decade long restoration efforts and subsequent monitoring of responses. This study provides important implications for large scale restoration and enhancement activities globally.

Citation: Theis S., Cartwright L., Chreston A., Coey B., Graham B., Little D., Poesch M.S., Portiss R., Wallace A. and J. L. W. Ruppert (2024). A multi-metric index for assessing two decades of community responses to broad scale shoreline enhancement and restoration along the Toronto waterfront. Aquatic Conservation: Marine and Freshwater Ecosystems 34: e24141.

Also Read:

Theis S.*, Cartwright L., Chreston A., Wallace A., Graham B., Coey B., Little D., Poesch M.S., Portiss R., and J. Ruppert (In Press). Nearshore fish community changes along the Toronto Waterfront in accordance with management and restoration goals: Insights from two decades of monitoring. PLos One.

*Lab members: Sebastian Theis, Mark Poesch. Check out opportunities in the lab!

Theis S.*, Cartwright L., Chreston A., Wallace A., Graham B., Coey B., Little D., Poesch M.S., Portiss R., and J. Ruppert (In Press). Nearshore fish community changes along the Toronto Waterfront in accordance with management and restoration goals: Insights from two decades of monitoring. PLos One.

Abstract:

Aquatic habitat in the Greater Toronto Area has been subject to anthropogenic stressors. The subsequent aquatic habitat degradation that followed led to the Toronto and Region waterfront being listed as an Area of Concern in 1987. Thus, extensive shoreline and riparian habitat restoration have been implemented as part of the Toronto and Region Remedial Action Plan in conjunction with local stakeholders, ministries, and NGOs in an overall effort to increase fish, bird, and wildlife habitat. A key aspect of current fish habitat restoration efforts, monitored by Toronto and Region Conservation Authority, is to account for long-term community changes within the target ecosystem to better understand overall changes at a larger spatial scale. Here we use electrofishing data from the past 20 years with over 100,000 records and across 72km of coastline to show how declines and fluctuations in fish biomass and catch along the waterfront are driven by a few individual species across three main ecotypes, such as coastal wetlands, embayments, and open coast sites, with the remaining species showing a high level of stability. Using community traits and composition for resident species we demonstrate native warmwater species have become more dominant along the waterfront in recent years, suggesting that restoration efforts are functioning as intended. Additionally, piscivore and specialist species have increased in their relative biomass contribution, approaching existing restoration targets. Altogether this waterfront-wide evaluation allows us to detect overall changes along the waterfront and can be beneficial to understand community changes at an ecosystem level when implementing and monitoring restoration projects.

Citation: Theis S., Cartwright L., Chreston A., Wallace A., Graham B., Coey B., Little D., Poesch M.S., Portiss R., and J. Ruppert (In Press). Nearshore fish community changes along the Toronto Waterfront in accordance with management and restoration goals: Insights from two decades of monitoring. PLos One.

Also Read:

Theis, S.*  Castellanos D.A., Hamann A. and M.S. Poesch. (2022) Exploring the potential role of habitat banks in preserving freshwater biodiversity and imperiled species in the United States. Biological Conservation 273: 109700.

*Lab members: Sebastian Theis, Mark Poesch. Check out opportunities in the lab!

Theis S.* and M. S. Poesch. (2024). What makes a bank a bank? Differences and commonalities in credit calculation, application, and risks in mitigation banks targeting freshwater fish species and associated ecosystems. Environmental Management

Abstract:

Mitigation banking is part of the ever-expanding global environmental market framework that aims to balance negative approved anthropogenic impacts versus third-party provided ecosystem benefits, sold in the form of credits. Given the need to conserve freshwater biodiversity and habitat, banking has received great traction in freshwater systems. While extensive reviews and studies have been conducted on evaluating if equivalency between impacts and offset can be achieved, there is almost no research being done on the way credits are being generated. Synthesizing banking data through cluster analyses from 26 banks in the United States generating credits for freshwater species and systems, we show two dominant approaches: removing barriers and targeting whole communities. Both address crucial freshwater conservation needs but come with their risks and caveats. Using common characteristics and management practices within these two groups, we showcase and conclude that credit generation via barrier removal can be at risk of granting credit generation for too large of an area, leading to over-crediting. Banks targeting whole freshwater communities and accounting for landscape-level interactions and influences can potentially be detrimental for species on an individual level and large-scale credit availability as well as transfer can incentivize non-compliance with the mitigation hierarchy.

Citation: Theis S. and M. S. Poesch. (2024). What makes a bank a bank? Differences and commonalities in credit calculation, application, and risks in mitigation banks targeting freshwater fish species and associated ecosystems. Environmental Management.

Also Read:

Theis S.*, and M.S. Poesch (2022) Assessing conservation and mitigation banking practices and associated gains and losses in the United States. Sustainability 14: 6652.

*Lab members: Sebastian Theis, Mark Poesch. Check out opportunities in the lab!

Theis, S.* and M. S. Poesch. (2024).  Mitigation bank applications for freshwater systems: Control mechanisms, project complexity, and caveats. PLOS One 19(2): e-292702.

Abstract:

Biodiversity and mitigation banking has become a popular alternative offsetting mechanism, especially for freshwater species and systems. Central to this increase in popularity is the need for sound control mechanisms to ensure offset functionality. Two commonly used mechanisms are monitoring requirements and staggered release of bank credits over time. We used data from 47 banks in the United States, targeting freshwater systems and species. Based on the 47 banks meeting our criteria we showed that control mechanisms generally scale with increased project complexity and that banks release most of their total credit amount within the first 3 years. We further showed that advance credits are common and can increase the potential for credit release without providing tangible ecological benefits. Physical and biological assessment criteria commonly used by banks let us identify three main bank types focusing on connectivity, physical aspects, and habitat and species and their application possibilities and caveats to provide different ecosystem benefits for freshwater species and systems affected by anthropogenic development.

Citation: Theis, S. and M. S. Poesch. (2024).  Mitigation bank applications for freshwater systems: Control mechanisms, project complexity, and caveats. PLOS One 19(2): e-292702.

Also Read:

Theis S.*, and M.S. Poesch (2022) Assessing conservation and mitigation banking practices and associated gains and losses in the United States. Sustainability 14: 6652.

*Lab members: Sebastian Theis, Mark Poesch. Check out opportunities in the lab!

Serbu, J. A., St. Louis, V. L., Emmerton, C. A., Tank S., Criscitello, A., Silins, U., Bhatia, M., Cavaco, M., Christenson, C., Cooke, C., Drapeau, H., Enns, S. J., Flett, J., Holland, K., Lavelle-Whiffen, J., Ma, M., Muir, C., Poesch, M. S., and J. Shin. (2023). A comprehensive biogeochemical assessment of climate-threatened glacial river headwaters on the eastern slopes of the Canadian Rocky Mountains. JGR Biogeosciences 129: e2023JG007745. 

Abstract:

Climate change is driving the loss of alpine glaciers globally, yet investigations about the health of rivers stemming from them are few. Here we provide an overview assessment of a biogeochemical dataset containing 200+ parameters that we collected between 2019-2021 from the headwaters of three such rivers (Sunwapta-Athabasca, North Saskatchewan, and Bow) which originate from the glacierized eastern slopes of the Canadian Rocky Mountains. We used regional hydrometric datasets to accurately model discharge at our sampling sites. We created a Local Meteoric Water Line (LMWL) using riverine water isotope signatures and compared it to regional rain, snow, and glacial ice signatures we also collected. Principal component analyses of river physicochemical measures revealed distance from glacier explained more data variability than the spatiotemporal factors season, year, or river. Discharge, chemical concentrations, and watershed areas were then used to model site-specific open water season yields for 25 parameters. Chemical yields followed what would generally be expected along river continuums from glacierized to montane altitudinal life zones, with landscape characteristics acting as chemical sources and sinks. For instance, particulate chemical yields were generally highest near source glaciers with proglacial lakes acting as settling ponds, whereas most dissolved yields varied by parameter and site. As these headwaters continue to evolve with glacier mass loss, the dataset and analyses presented here can be used as a contemporary baseline to mark future change against. Further, following this initial assessment of our dataset, we encourage others to mine it for additional biogeochemical studies.

Citation: Serbu, J. A., St. Louis, V. L., Emmerton, C. A., Tank S., Criscitello, A., Silins, U., Bhatia, M., Cavaco, M., Christenson, C., Cooke, C., Drapeau, H., Enns, S. J., Flett, J., Holland, K., Lavelle-Whiffen, J., Ma, M., Muir, C., Poesch, M. S., and J. Shin. (2023). A comprehensive biogeochemical assessment of climate-threatened glacial river headwaters on the eastern slopes of the Canadian Rocky Mountains. JGR Biogeosciences 129: e2023JG007745. 

Also Read:

Theis, S.*  Castellanos D.A., Hamann A. and M.S. Poesch. (2023) Small-bodied fish species from western United States will be under severe water stress by 2040. Conservation Science and Practice: e12856.

*Lab members: Mark Poesch. Check out opportunities in the lab!

Pandit, S.N.*, Koriala, L., Maitland, B.M*, Poesch, M.S., and E. Enders. (2017) Climate change risks, extinction debt, and conservation implications for an endangered freshwater fish Carmine Shiner (Notropis percobromus). Science of the Total Environment 598: 1-11.

Abstract:

Climate change is affecting many freshwater species, particularly fishes. Predictions of future climate change suggest large and deleterious effects on species with narrow dispersal abilities due to limited hydrological connectivity. In turn, this creates the potential for population isolation in thermally unsuitable habitats, leading to physiological stress, species declines or possible extirpation. The current extent of many freshwater fish species’ spatio-temporal distribution patterns and their sensitivity to thermal impacts from climate change − critical information for conservation planning − are often unknown. Carmine shiner (Notropis percobromus) is an ecologically important species listed as threatened or imperilled nationally (Canada) and regionally (South Dakota, United States) due to its restricted range and sensitivity to water quality and temperature. This research aimed to determine the current distribution and spatio-temporal variability in projected suitable habitat for Carmine shiner using niche-based modeling approaches (MaxEnt, BIOCLIM, and DOMAIN models). Statistically downscaled, bias-corrected Global Circulation Models (GCMs) data was used to model the distribution of Carmine shiner in central North America for the period of 2041–2060 (2050s). Maximum mean July temperature and temperature variability were the main factors in determining Carmine shiner distribution. Patterns of projected habitat change by the 2050s suggest the spatial extent of the current distribution of Carmine shiner would shift north, with > 50% of the current distribution changing with future projections based on two Representative Concentrations Pathways for CO2 emissions. Whereas the southern extent of the distribution would become unsuitable for Carmine shiner, suitable habitats are predicted to become available further north, if accessible. Importantly, the majority of habitat gains for Carmine shiner would be in areas currently inaccessible due to dispersal limitations, suggesting current populations may face an extinction debt within the next half century. These results provide evidence that Carmine shiner may be highly vulnerable to a warming climate and suggest that management actions – such as assisted migration – may be needed to mitigate impacts from climate change and ensure the long-term persistence of the species.

CitationPandit, S.N.*, Koriala, L., Maitland, B.M*, Poesch, M.S., and E. Enders. (2017) Climate change risks, extinction debt, and conservation implications for an endangered freshwater fish Carmine Shiner (Notropis percobromus). Science of the Total Environment 598: 1-11.

Predicted Change in Carmine Shiner Distribution given Climate Change Scenarios (RCP 2.6 top; RCP8.5 bottom) across various thresholds

Also Read:

Poesch, M.S., Chavarie, L., Chu, C., Pandit, S.N.*, and W. Tonn. (2016) Climate change impacts on freshwater fishes: A Canadian perspective. Fisheries 41(7): 385-391.

*Lab members: Shubha PanditBryan MaitlandMark Poesch. Check out opportunities in the lab!

Poesch, M.S., Chavarie, L., Chu, C., Pandit, S.N.*, and W. Tonn. (2016) Climate change impacts on freshwater fishes: A Canadian perspective. Fisheries 41(7): 385-391.

Abstract:

Current and projected patterns of global climate change are a major concern to freshwater fisheries in Canada. The magnitude of the impacts of climate change vary among species and ecoregions. The latest climate change scenario projections for Canada suggest that by 2050 temperatures will increase between about 4.9°C ± 1.7°C (average mean ± standard deviation) and 6.6°C ± 2.3°C under the Representative Concentration Pathways (RCPs) 2.6 and 8.5 emission scenarios, respectively. These changes will have an important influence on the physiology, distribution, and survival of freshwater fishes, as well as other ecological processes in direct, indirect, and complex ways. Here we provide a perspective from the Canadian Aquatic Resources Section on the impacts of climate change to freshwater fishes. Given the geographic size and diversity of landscapes within Canada, we have divided our perspective into three regions: eastern, western, and northern Canada. We outline the impacts of climate change to these regions and outline challenges for fisheries managers. Because climate change does not operate in isolation of other environmental threats, nor does it impact species in isolation, we suggest improved inter jurisdictional integration and the use of an adaptive and ecosystem-based approach to management of these threats.

Citation: Poesch, M.S., Chavarie, L., Chu, C., Pandit, S.N.*, and W. Tonn. (2016) Climate change impacts on freshwater fishes: A Canadian perspective. Fisheries 41(7): 385-391.

List of species that have potential to extend their range and/or abundance northward into the Arctic, with some biological characteristics related to expansion of their existing ranges.

Also Read:

Theis, S.*  Castellanos D.A., Hamann A. and M.S. Poesch. (2022) Exploring the potential role of habitat banks in preserving freshwater biodiversity and imperiled species in the United States. Biological Conservation 273: 109700.

*Lab members: Shubha PanditMark Poesch. Check out opportunities in the lab!