Finn, K.*, Roberts, K.N.* and M.S. Poesch (2022) Cestode parasites are depleted in 15N relative to their fish hosts in northern Alberta, Canada. Fisheries Research 248: 106193..

Abstract:

The use of stable isotopes to study trophic interactions and food webs has become a common practice in ecology. Until recently, parasites were largely omitted from these analyses despite their known contribution to ecosystem complexity and function. Long-standing assumptions about the enrichment of δ15N in consumers relative to their resources occasionally placed parasites in trophic positions above their hosts. However, recent literature has shown that unlike consumers to prey, parasites do not reliably exhibit enrichment in δ15N. This is particularly true of helminth endoparasites in the class cestoda, which tend to be depleted in δ15N. We developed empirical estimates of nitrogen and carbon stable isotope ratios from a cestode parasite (Ligula intestinalis) across four fish hosts from two lakes in northern Alberta, Canada. We found that L. intestinalis were depleted in δ15N relative to their hosts across all host fish species, with mean nitrogen discrimination factors (Δ15N) ranging from -1.92 ± 0.24 ‰ to -2.91 ± 1.17 ‰. In contrast, δ 13C values did not differ significantly in any direction between hosts and their parasites. Mean carbon discrimination factors (Δ13C) ranged from -0.66 ± 2.69 ‰ to 0.04 ± 1.53 ‰. We also tested for relationships between proportional parasite biomass and discrimination factor (Δ15N & Δ13C), and found high variability in strength and direction of these correlations across species. The direction and magnitude of nitrogen discrimination we found for L. intestinalis is similar to that of previous cestode stable isotope studies and may indicate consistency across the class cestoda. However, class cestoda is incredibly diverse and relatively few studies have examined host-parasite
discrimination factors within the clade. We encourage additional research into host-parasite discrimination factors for the class cestoda, and across all parasite taxa. This could facilitate the inclusion of these widespread interactions into food web studies, thus improving our knowledge of trophic structure and dynamics.

Citation: Finn, K., Roberts, K.N. and M.S. Poesch (2022) Cestode parasites are depleted in 15N relative to their fish hosts in northern Alberta, Canada. Fisheries Research 248: 106193.

Also Read:

Medinski, N.A.*, Maitland, B.M.*, Jardine, T.D., Drake, D.A.R. and M.S. Poesch (2022) A catastrophic coal mine spill in the Athabasca River watershed induces isotopic niche shifts in stream biota including an endangered rainbow trout ecotype. Canadian Journal for Fisheries and Aquatic Sciences 79(8): 1321-1334.

*Lab members: Karling Roberts, Mark Poesch. Check out opportunities in the lab!

Pereyra, P.E.R, Hallwas, G., Poesch, M.S. and R. Silvano (2021) ‘Taking fishers’ knowledge to the lab’: an interdisciplinary approach to understand fish trophic relationships in the Brazilian Amazon. Frontiers in Ecology and Evolution.

Abstract:

Trophic levels can be applied to describe the ecological role of organisms in food webs and assess changes in ecosystems. Stable isotopes analysis can assist in the understanding of trophic interactions and use of food resources by aquatic organisms. The local ecological knowledge (LEK) of fishers can be an alternative to advance understanding about fish trophic interactions and to construct aquatic food webs, especially in regions lacking research capacity. The objectives of this study are: to calculate the trophic levels of six fish species important to fishing by combining data from stable isotopes analysis and fishers’ LEK in two clear water rivers (Tapajós and Tocantins) in the Brazilian Amazon; to compare the trophic levels of these fish between the two methods (stable isotopes analysis and LEK) and the two rivers; and to develop diagrams representing the trophic webs of the main fish prey and predators based on fisher’s LEK. The fish species studied were Pescada (Plagioscion squamosissimus), Tucunaré (Cichla pinima), Piranha (Serrasalmus rhombeus), Aracu (Leporinus fasciatus), Charuto (Hemiodus unimaculatus) and Jaraqui (Semaprochilodus spp.). A total of 98 interviews and 63 samples for stable isotopes analysis were carried out in both rivers. The average fish trophic levels did not differ between the stable isotopes analysis and the LEK in the Tapajós, nor in the Tocantins Rivers. The overall trophic level of the studied fish species obtained through the LEK did not differ from data obtained through the stable isotopes analysis in both rivers, except for the Aracu in the Tapajós River. The main food items consumed by the fish according to fishers’ LEK did agree with fish diets as described in the biological literature. Fishers provided useful information on fish predators and feeding habits of endangered species, such as river dolphin and river otter. Collaboration with fishers through LEK studies can be a viable approach to produce reliable data on fish trophic ecology to improve fisheries management and species conservation in tropical freshwater environments and other regions with data limitations.

Also Read:

Dutra, M.C.F., Pereyra, P.E.R., Hallwass, G., Poesch, M.S. and R.A.M. Silvano. (2023). Fishers’ knowledge on trophic ecology and of the tropical ‘super fish’ Plagioscion squamosissimus in two Brazilian Amazonian rivers. Neotropical Ichthyology 21(1): e220041.

*Lab members: Mark Poesch. Check out opportunities in the lab!

Castaneda, R.A., Ackerman, J.D., Chapman, L.J., Cooke, S.J., Cuddington, K., Dextrase, A., Jackson, D.A., Koops, M.A., Krkosek, M., Loftus, K., Mandrak, N.E., Martel, A.L., Molnar, P., Morris, T.J., Pitcher, T.E., Poesch, M.S., Power, M., Pratt, T.C., Reid, S.M., Rodriguez, M.A., Rosenfeld, J., Wilson, C., Zanatta, D.T. and D.A.R. Drake. (2021) Approaches and research needs for advancing the protection and recovery of imperilled freshwater fishes and mussels in Canada. Canadian Journal of Fisheries and Aquatic Sciences 78 (9): 1356-1370.

Abstract:

Effective conservation requires that species recovery measures are informed by rigorous scientific research. For imperilled freshwater fishes and mussels in Canada, numerous research gaps exist, in part owing to the need for specialized research methods. The Canadian Freshwater Species at Risk Research Network (SARNET) was formed, and identified or implemented approaches to address current research gaps, including: 1) captive experimental research populations; 2) non-lethal methods for estimating abundance and distribution; 3) non-lethal field methods to measure life-history parameters; 4) species distribution models informed by co-occurring species; 5) integration of conservation physiology into habitat and threat science; 6) evidence syntheses to evaluate threats and recovery strategies; 7) disease-transmission models to understand mussel-host relationships; 8) experimental mesocosms and manipulative experiments to evaluate key habitat stressors; 9) threat and hazard models for predictive applications; and, 10) rigorous evaluation of surrogate species. Over a dozen threat and recovery-focused SARNET-research applications are summarized, demonstrating the value of a coordinated research program between academics and government to advance scientific research on, and to support the recovery of, imperilled freshwater species.

Citation: Castaneda, R.A., Ackerman, J.D., Chapman, L.J., Cooke, S.J., Cuddington, K., Dextrase, A., Jackson, D.A., Koops, M.A., Krkosek, M., Loftus, K., Mandrak, N.E., Martel, A.L., Molnar, P., Morris, T.J., Pitcher, T.E., Poesch, M.S., Power, M., Pratt, T.C., Reid, S.M., Rodriguez, M.A., Rosenfeld, J., Wilson, C., Zanatta, D.T. and D.A.R. Drake. (2021) Approaches and research needs for advancing the protection and recovery of imperilled freshwater fishes and mussels in Canada. Canadian Journal of Fisheries and Aquatic Sciences 78 (9): 1356-1370.

Also Read:

Theis, S.*  Castellanos D.A., Hamann A. and M.S. Poesch. (2023) Small-bodied fish species from western United States will be under severe water stress by 2040. Conservation Science and Practice: e12856.

*Lab members: Mark Poesch. Check out opportunities in the lab!

Baird, I., Silvano, R., Parlee, B., Poesch, M., Napolean, A., Lepine, M., Halwass, G., and B. MacLean. (2021) The Downstream Impacts of Hydropower Dams and Indigenous and Local Knowledge: Examples from the Peace-Athabasca, Mekong and Amazon River Basins. Environmental Management 67: 682-696.

Abstract:

There has been much written about the negative social and environmental impacts of large hydropower dams, particularly the impacts on people and the environment caused by flooding linked to the creation of large reservoirs. There has also long been recognition of the importance of Indigenous and local knowledge for understanding ecological processes and environmental impacts. In this paper, however, we focus on a topic that has received insufficient consideration: the downstream impacts of dams, and the role of Indigenous and local knowledge in assessing and addressing these impacts. Using examples from three river basins in different parts of the world: the Peace-Athabasca in Canada, the Mekong in mainland Southeast Asia, and the Amazon in Brazil, we demonstrate that the downstream impacts of hydropower dams are often neglected due to the frequently long distances between dams and impacted areas, jurisdictional boundaries, and the less obvious nature of downstream impacts. We contend that Indigenous or local knowledge, if applied consistently and appropriately, have important roles to play in understanding and addressing these impacts, with the goal of avoiding, reducing, and appropriately compensating for the types of environmental injustices that are frequently associated with the downstream impacts of dams.

CitationBaird, I., Silvano, R., Parlee, B., Poesch, M., Napolean, A., Lepine, M., Halwass, G., and B. MacLean. (2021) The Downstream Impacts of Hydropower Dams and Indigenous and Local Knowledge: Examples from the Peace-Athabasca, Mekong and Amazon River Basins. Environmental Management 67: 682-696 

Also Read:

Pereyra, P.E.R, Hallwas, G., Poesch, M.S. and R. Silvano (2021) ‘Taking fishers’ knowledge to the lab’: an interdisciplinary approach to understand fish trophic relationships in the Brazilian Amazon. Frontiers in Ecology and Evolution.

*Lab members: Mark Poesch. Check out opportunities in the lab!

Banting, A.*, Vinebrooke, R., Taylor, M., Carli, C. and M.S. Poesch. (2021) Impacts of a regionally-native predator on littoral macrobenthos in fishless mountain lakes: implications for assisted colonization. Conservation Science and Practice 3(2): e344.

Abstract:

The intentional introduction of native cold-water trout into high elevation fishless lakes has been considered as a tool for building resilience to climate change (i.e. “assisted colonization”). However, ecological impacts on recipient communities are understudied. Our purpose was to inform native trout recovery by assessing potential consequences of translocating a regionally-native trout (Westslope Cutthroat Trout, Oncorhynchus clarkii) into fishless mountain lakes. We compared littoral benthic invertebrate richness, diversity, community structure, and density between three groups of lakes (native trout, nonnative trout, and fishless) in the Canadian Rocky Mountains. While richness and diversity was conserved across all lake groups, other lines of evidence suggested introducing native Westslope Cutthroat Trout into fishless lakes can alter littoral benthic invertebrate communities in similar ways as nonnative Brook Trout (Salvelinus fontinalis). The community structure of  Cutthroat Trout lakes resembled Brook Trout lakes in comparison to fishless lakes. For example, both trout lake groups contained lower density of free-swimming ameletid mayflies and a higher density of some burrowing taxa. Considering the alteration certain aquatic invertebrates can cause cascading trophic effects, we suggest risk assessments consider a broad range of taxa to mitigate risk of collateral damage from trout recovery actions.

Citation: Banting, A., Vinebrooke, R., Taylor, M., Carli, C. and M.S. Poesch. (2021) Impacts of a regionally-native predator on littoral macrobenthos in fishless mountain lakes: implications for assisted colonization. Conservation Science and Practice 3(2): e344.

Also Read:

Castaneda, R.A., Ackerman, J.D., Chapman, L.J., Cooke, S.J., Cuddington, K., Dextrase, A., Jackson, D.A., Koops, M.A., Krkosek, M., Loftus, K., Mandrak, N.E., Martel, A.L., Molnar, P., Morris, T.J., Pitcher, T.E., Poesch, M.S., Power, M., Pratt, T.C., Reid, S.M., Rodriguez, M.A., Rosenfeld, J., Wilson, C., Zanatta, D.T. and D.A.R. Drake. (2021) Approaches and research needs for advancing the protection and recovery of imperilled freshwater fishes and mussels in Canada. Canadian Journal of Fisheries and Aquatic Sciences 78 (9): 1356-1370.

*Lab members: Allison Banting and Mark Poesch. Check out opportunities in the lab!

Donadt, C.*, Cooke, C., Graydon, J. and M.S. Poesch. (2021) Biological factors moderate trace element accumulation in fish along an environmental concentration gradient. Environmental Toxicology and Chemistry 40(2): 422-434.

Abstract:

Trace elements can accumulate in aquatic foodwebs, becoming potentially hazardous wildlife and human health. While many studies have examined mercury dynamics in freshwater environments, evidence for the bioaccumulative potential of other trace elements (e.g., arsenic) is conflicting. Trace element concentrations found in surface water of the Red Deer River, Alberta, Canada, have raised concern for potential accumulation in aquatic biota. We investigated fish from this river to better understand the influence of biological and environmental factors in trace element bioaccumulation. We analyzed 20 trace elements and food web tracers, stable nitrogen (δ15N) and carbon (δ13C) isotopes, in muscle tissue. Zinc, selenium, arsenic, chromium, and nickel were detected in the majority of fish at low concentrations. However, mercury was detected in all fish and often exceeded criteria for the protection of consumers. Body size was often positively correlated with trace element concentrations. Additionally, food web tracers were correlated to mercury and arsenic concentrations, indicating that mercury biomagnifies whereas arsenic bio-diminishes. Spatial patterns of fish trace element concentrations did not reflect differences in surface water concentrations. These findings indicate that fish trace element concentrations are primarily moderated by biological factors, such as trophic position and body size, and are not locally restricted to areas of relatively high environmental concentrations in the Red Deer River.

Citation: Donadt, C., Cooke, C., Graydon, J. and M.S. Poesch. (2021) Biological factors moderate trace element accumulation in fish along an environmental concentration gradient. Environmental Toxicology and Chemistry 40(2): 422-434.

Also Read:

Ponton D.E., Ruelas-Inzunza J., Lavoie R., Lescord G.L., Johnston T.A., Graydon J.A., Reichert, M., Donadt C.*, Poesch M.S., Gunn, J.A., and M. Amyot. (2022) Mercury, selenium and arsenic concentrations in Canadian freshwater fish and a perspective on human consumption intake and risk. Journal of Hazardous Materials Advances.

*Lab members: Caitlyn Donadt and Mark Poesch. Check out opportunities in the lab!

Donadt, C.*, Cooke, C., Graydon, J. and M.S. Poesch. (2021) Mercury bioaccumulation in stream fish from an agriculturally-dominated watershed. Chemosphere 262: 128059.

Abstract:

Bioaccumulation of mercury in freshwater fish is a complex process driven by environmental and biological factors. In this study, we assessed mercury in fish from four tributaries to the Red Deer River, Alberta, Canada, which are characterized by high surface water mercury concentrations. We used carbon (δ13C) and nitrogen (δ15N) stable isotopes to examine relationships between fish total mercury (THg) concentrations, food web dynamics and patterns in unfiltered THg and methylmercury (MeHg) concentrations. We found that THg concentrations exceeded the tissue residue quality guideline for the protection of wildlife consumers in 99.7% of fish sampled. However, while the surface water THg concentration was highest in Michichi Creek and the MeHg concentration was consistent across streams, patterns of fish THg concentrations varied depending on species. Furthermore, body size and trophic level were only correlated with THg concentrations in white sucker (Catostomus commersoni) and Prussian carp (Carrasius gibelio). The results of this study suggest that mercury poses a risk to the health of piscivorous wildlife in the Red Deer River watershed. Despite high THg concentrations in these streams, mercury bioaccumulation is not driven by environmental inorganic mercury concentrations. Additionally, commonly cited factors associated with mercury concentrations in fish, such as body size and trophic level, may not strongly influence bioaccumulation in these stream ecosystems.

Citation: Donadt, C., Cooke, C., Graydon, J. and M.S. Poesch. (2021) Mercury bioaccumulation in stream fish from an agriculturally-dominated watershed. Chemosphere 262: 128059.

Also Read:

Donadt, C.*, Cooke, C., Graydon, J. and M.S. Poesch. (2021) Biological factors moderate trace element accumulation in fish along an environmental concentration gradient. Environmental Toxicology and Chemistry 40(2): 422-434.

*Lab members: Caitlyn Donadt and Mark Poesch. Check out opportunities in the lab!

Theis, S.*, Ruppert, J.W.R*, Roberts, K.*, Koops, M., Minns, K. and M.S. Poesch. (2020) Compliance with and ecosystem function of biodiversity offsets in North American and European freshwaters. Conservation Biology 34(1) 41-53.

Abstract:

Land‐use change via human development is a major driver of biodiversity loss. To reduce these impacts, billions of dollars are spent on biodiversity offsets. However, studies evaluating offset project effectiveness that examine components such as the overall compliance and function of projects remain rare. We reviewed 577 offsetting projects in freshwater ecosystems that included the metrics project size, type of aquatic system (e.g., wetland, creek), offsetting measure (e.g., enhancement, restoration, creation), and an assessment of the projects’ compliance and functional success. Project information was obtained from scientific and government databases and gray literature. Despite considerable investment in offsetting projects, crucial problems persisted. Although compliance and function were related to each other, a high level of compliance did not guarantee a high degree of function. However, large projects relative to area had better function than small projects. Function improved when projects targeted productivity or specific ecosystem features and when multiple complementary management targets were in place. Restorative measures were more likely to achieve targets than creating entirely new ecosystems. Altogether the relationships we found highlight specific ecological processes that may help improve offsetting outcomes.

Highlighted by CBC Radio: (link).

Citation: Theis, S.*, Ruppert, J.W.R*, Roberts, K.*, Koops, M., Minns, K. and M.S. Poesch. (2020) Compliance with and ecosystem function of biodiversity offsets in North American and European freshwaters. Conservation Biology 34(1) 41-53.

Also Read:

Theis, S.*  Koops, M. and M.S. Poesch. (2022) A meta-analysis on the effectiveness of offsetting strategies for harm to freshwater fishes. Environmental Management 70(5): 793-807.

*Lab members:  Sebastian Theis, Jonathan Ruppert, Karling Roberts and  Mark Poesch. Check out opportunities in the lab!

Ruppert, J.L.W.*, Hogg, J., and M.S. Poesch. (2018) Community assembly and the sustainability of habitat offsetting targets in the first compensation lake in the oil sands region in Alberta, Canada. Biological Conservation 219: 138-146.

Abstract:

Resource development can have a negative impact on species productivity and diversity through the loss and fragmentation of habitat. In many countries, developers are required by law to offset such impacts by replacing lost habitat or providing other forms of compensation. In the case of broad scale development, offsets often cannot be constructed to replace lost habitat “like-for-like” (i.e., they are not ecologically equivalent). In freshwater ecosystems, one approach to habitat offsetting is to create new lake ecosystems, called compensation lakes, to replace lost riverine habitat. In this study, we use a long-term data set (2008–2015) of fish and benthic invertebrate communities from Canada’s first compensation lake in the oil sands region of Alberta, to address (1) whether the assembly of the fish community has a trajectory that is influenced by management activities and (2) determine whether the community composition in the habitat offset is common in natural lake ecosystems within the region. We find a significant decline in the mean trophic level of the lake, where 61.9% of the variation in trophic level is explained by time indicating a strong structuring influence on fish communities. This outcome has enabled the compensation lake to meet overall and single species productivity targets, but we find that the species assemblage and composition is not common within the region. A combination of the founding species community and reduced connectivity of the lake has contributed to the current fish community structure, which may be problematic for the sustainability of the habitat offsetting targets. Our study highlights the need to establish multiple conservation guidelines, using both productivity and diversity based metrics, to provide the best ecological equivalency, which can produce better function, resilience and health within focal species communities in habitat offsets that are not “like-for-like.”

CitationRuppert, J.L.W., Hogg, J., and M.S. Poesch. (2018) Community assembly and the sustainability of habitat offsetting targets in the first compensation lake in the oil sands region in Alberta, Canada. Biological Conservation 219: 138-146.

Graphical Abstract:

Figure – Changes in Freshwater Communities Through Time. Shown is teh annual (A) mean density and (B) species diversity of fish species in Horizon Lake during the monitoring period of 2008-2015. Also shown is the corresponding annual (C) mean density and (D) diversity of bentic invertebrates during that period (EK- Ekman Grab; KN – Kick Net).

Also Read:

Theis, S.*, Ruppert, J. L. W. and M. S. Poesch. (2023) Coarse woody habitat use by local fish species and structural integrity of enhancements over time in a shallow northern boreal lake assessed in a Bayesian modeling approach. Ecological Solutions and Evidence 4(2): e12200.

*Lab members: Jonathan RuppertMark Poesch. Check out opportunities in the lab!

Sun, C., Shotyk, W., Cuss, C., Donner, M., Fennel, M., Javed, M., Noernberg, T., Poesch, M.S., Pelletier, R., Sinnatamby, N.*, Siddique, T., and J. Martin. (2017) Characterisation of naphthenic acids and bitumen derived organics in natural water from the Athabasca Oil Sands Region, Canada. Environmental Science and Technology 51 (17): 9524-9532

Abstract:

With growth of the Canadian oil sands industry, concerns have been raised about possible seepage of toxic oil sands process-affected water (OSPW) into the Athabasca River (AR). A sampling campaign in fall 2015 was undertaken to monitor for anthropogenic seepage while also considering natural sources. Naphthenic acids (NAs) and thousands of bitumen-derived organics were characterized in surface water, groundwater, and OSPW using a highly sensitive online solid phase extraction-HPLC-Orbitrap method. Elevated NA concentrations and bitumen-derived organics were detected in McLean Creek (30.1 μg/L) and Beaver Creek (190 μg/L), two tributaries that are physically impacted by tailings structures. This was suggestive of OSPW seepage, but conclusive differentiation of anthropogenic and natural sources remained difficult. High NA concentrations and bitumen-derived organics were also observed in natural water located far north of the industry, including exceedingly high concentrations in AR groundwater (A5w-GW, 2000 μg/L) and elevated concentration in a tributary river (Pierre River, 34.7 μg/L). Despite these evidence for both natural and anthropogenic seepage, no evidence of any bitumen-derived organics was detected at any location in AR mainstem surface water. The chemical significance of any bitumen-derived seepage to the AR was therefore minimal, and focused monitoring in tributaries will be valuable in the future.

Citation: Sun, C., Shotyk, W., Cuss, C., Donner, M., Fennel, M., Javed, M., Noernberg, T., Poesch, M.S., Pelletier, R., Sinnatamby, N., Siddique, T., and J. Martin. (2017) Characterisation of naphthenic acids and bitumen derived organics in natural water from the Athabasca Oil Sands Region, Canada. Environmental Science and Technology 51 (17): 9524-9532

Also Read:

Shotyk, W., Bicalho, B., Cuss, C.W., Nagel, A., Noernberg, T., Poesch, M.S., and N.R. Sinnatamby*. (2018) Bioaccumulation of Tl in otoliths of Trout-perch (Percopsis omiscomaycus) from the Athabasca River, upstream and downstream of bitumen mining and upgrading. Science of the Total Environment 650(2): 2559-2566.

*Lab members: Nilo SinnatambyMark Poesch. Check out opportunities in the lab!