Castaneda, R.A., Ackerman, J.D., Chapman, L.J., Cooke, S.J., Cuddington, K., Dextrase, A., Jackson, D.A., Koops, M.A., Krkosek, M., Loftus, K., Mandrak, N.E., Martel, A.L., Molnar, P., Morris, T.J., Pitcher, T.E., Poesch, M.S., Power, M., Pratt, T.C., Reid, S.M., Rodriguez, M.A., Rosenfeld, J., Wilson, C., Zanatta, D.T. and D.A.R. Drake. (2021) Approaches and research needs for advancing the protection and recovery of imperilled freshwater fishes and mussels in Canada. Canadian Journal of Fisheries and Aquatic Sciences 78 (9): 1356-1370.

Abstract:

Effective conservation requires that species recovery measures are informed by rigorous scientific research. For imperilled freshwater fishes and mussels in Canada, numerous research gaps exist, in part owing to the need for specialized research methods. The Canadian Freshwater Species at Risk Research Network (SARNET) was formed, and identified or implemented approaches to address current research gaps, including: 1) captive experimental research populations; 2) non-lethal methods for estimating abundance and distribution; 3) non-lethal field methods to measure life-history parameters; 4) species distribution models informed by co-occurring species; 5) integration of conservation physiology into habitat and threat science; 6) evidence syntheses to evaluate threats and recovery strategies; 7) disease-transmission models to understand mussel-host relationships; 8) experimental mesocosms and manipulative experiments to evaluate key habitat stressors; 9) threat and hazard models for predictive applications; and, 10) rigorous evaluation of surrogate species. Over a dozen threat and recovery-focused SARNET-research applications are summarized, demonstrating the value of a coordinated research program between academics and government to advance scientific research on, and to support the recovery of, imperilled freshwater species.

Citation: Castaneda, R.A., Ackerman, J.D., Chapman, L.J., Cooke, S.J., Cuddington, K., Dextrase, A., Jackson, D.A., Koops, M.A., Krkosek, M., Loftus, K., Mandrak, N.E., Martel, A.L., Molnar, P., Morris, T.J., Pitcher, T.E., Poesch, M.S., Power, M., Pratt, T.C., Reid, S.M., Rodriguez, M.A., Rosenfeld, J., Wilson, C., Zanatta, D.T. and D.A.R. Drake. (2021) Approaches and research needs for advancing the protection and recovery of imperilled freshwater fishes and mussels in Canada. Canadian Journal of Fisheries and Aquatic Sciences 78 (9): 1356-1370.

Also Read:

Theis, S.*  Castellanos D.A., Hamann A. and M.S. Poesch. (2023) Small-bodied fish species from western United States will be under severe water stress by 2040. Conservation Science and Practice: e12856.

*Lab members: Mark Poesch. Check out opportunities in the lab!

Baird, I., Silvano, R., Parlee, B., Poesch, M., Napolean, A., Lepine, M., Halwass, G., and B. MacLean. (2021) The Downstream Impacts of Hydropower Dams and Indigenous and Local Knowledge: Examples from the Peace-Athabasca, Mekong and Amazon River Basins. Environmental Management 67: 682-696.

Abstract:

There has been much written about the negative social and environmental impacts of large hydropower dams, particularly the impacts on people and the environment caused by flooding linked to the creation of large reservoirs. There has also long been recognition of the importance of Indigenous and local knowledge for understanding ecological processes and environmental impacts. In this paper, however, we focus on a topic that has received insufficient consideration: the downstream impacts of dams, and the role of Indigenous and local knowledge in assessing and addressing these impacts. Using examples from three river basins in different parts of the world: the Peace-Athabasca in Canada, the Mekong in mainland Southeast Asia, and the Amazon in Brazil, we demonstrate that the downstream impacts of hydropower dams are often neglected due to the frequently long distances between dams and impacted areas, jurisdictional boundaries, and the less obvious nature of downstream impacts. We contend that Indigenous or local knowledge, if applied consistently and appropriately, have important roles to play in understanding and addressing these impacts, with the goal of avoiding, reducing, and appropriately compensating for the types of environmental injustices that are frequently associated with the downstream impacts of dams.

CitationBaird, I., Silvano, R., Parlee, B., Poesch, M., Napolean, A., Lepine, M., Halwass, G., and B. MacLean. (2021) The Downstream Impacts of Hydropower Dams and Indigenous and Local Knowledge: Examples from the Peace-Athabasca, Mekong and Amazon River Basins. Environmental Management 67: 682-696 

Also Read:

Pereyra, P.E.R, Hallwas, G., Poesch, M.S. and R. Silvano (2021) ‘Taking fishers’ knowledge to the lab’: an interdisciplinary approach to understand fish trophic relationships in the Brazilian Amazon. Frontiers in Ecology and Evolution.

*Lab members: Mark Poesch. Check out opportunities in the lab!

Banting, A.*, Vinebrooke, R., Taylor, M., Carli, C. and M.S. Poesch. (2021) Impacts of a regionally-native predator on littoral macrobenthos in fishless mountain lakes: implications for assisted colonization. Conservation Science and Practice 3(2): e344.

Abstract:

The intentional introduction of native cold-water trout into high elevation fishless lakes has been considered as a tool for building resilience to climate change (i.e. “assisted colonization”). However, ecological impacts on recipient communities are understudied. Our purpose was to inform native trout recovery by assessing potential consequences of translocating a regionally-native trout (Westslope Cutthroat Trout, Oncorhynchus clarkii) into fishless mountain lakes. We compared littoral benthic invertebrate richness, diversity, community structure, and density between three groups of lakes (native trout, nonnative trout, and fishless) in the Canadian Rocky Mountains. While richness and diversity was conserved across all lake groups, other lines of evidence suggested introducing native Westslope Cutthroat Trout into fishless lakes can alter littoral benthic invertebrate communities in similar ways as nonnative Brook Trout (Salvelinus fontinalis). The community structure of  Cutthroat Trout lakes resembled Brook Trout lakes in comparison to fishless lakes. For example, both trout lake groups contained lower density of free-swimming ameletid mayflies and a higher density of some burrowing taxa. Considering the alteration certain aquatic invertebrates can cause cascading trophic effects, we suggest risk assessments consider a broad range of taxa to mitigate risk of collateral damage from trout recovery actions.

Citation: Banting, A., Vinebrooke, R., Taylor, M., Carli, C. and M.S. Poesch. (2021) Impacts of a regionally-native predator on littoral macrobenthos in fishless mountain lakes: implications for assisted colonization. Conservation Science and Practice 3(2): e344.

Also Read:

Castaneda, R.A., Ackerman, J.D., Chapman, L.J., Cooke, S.J., Cuddington, K., Dextrase, A., Jackson, D.A., Koops, M.A., Krkosek, M., Loftus, K., Mandrak, N.E., Martel, A.L., Molnar, P., Morris, T.J., Pitcher, T.E., Poesch, M.S., Power, M., Pratt, T.C., Reid, S.M., Rodriguez, M.A., Rosenfeld, J., Wilson, C., Zanatta, D.T. and D.A.R. Drake. (2021) Approaches and research needs for advancing the protection and recovery of imperilled freshwater fishes and mussels in Canada. Canadian Journal of Fisheries and Aquatic Sciences 78 (9): 1356-1370.

*Lab members: Allison Banting and Mark Poesch. Check out opportunities in the lab!

Donadt, C.*, Cooke, C., Graydon, J. and M.S. Poesch. (2021) Biological factors moderate trace element accumulation in fish along an environmental concentration gradient. Environmental Toxicology and Chemistry 40(2): 422-434.

Abstract:

Trace elements can accumulate in aquatic foodwebs, becoming potentially hazardous wildlife and human health. While many studies have examined mercury dynamics in freshwater environments, evidence for the bioaccumulative potential of other trace elements (e.g., arsenic) is conflicting. Trace element concentrations found in surface water of the Red Deer River, Alberta, Canada, have raised concern for potential accumulation in aquatic biota. We investigated fish from this river to better understand the influence of biological and environmental factors in trace element bioaccumulation. We analyzed 20 trace elements and food web tracers, stable nitrogen (δ15N) and carbon (δ13C) isotopes, in muscle tissue. Zinc, selenium, arsenic, chromium, and nickel were detected in the majority of fish at low concentrations. However, mercury was detected in all fish and often exceeded criteria for the protection of consumers. Body size was often positively correlated with trace element concentrations. Additionally, food web tracers were correlated to mercury and arsenic concentrations, indicating that mercury biomagnifies whereas arsenic bio-diminishes. Spatial patterns of fish trace element concentrations did not reflect differences in surface water concentrations. These findings indicate that fish trace element concentrations are primarily moderated by biological factors, such as trophic position and body size, and are not locally restricted to areas of relatively high environmental concentrations in the Red Deer River.

Citation: Donadt, C., Cooke, C., Graydon, J. and M.S. Poesch. (2021) Biological factors moderate trace element accumulation in fish along an environmental concentration gradient. Environmental Toxicology and Chemistry 40(2): 422-434.

Also Read:

Ponton D.E., Ruelas-Inzunza J., Lavoie R., Lescord G.L., Johnston T.A., Graydon J.A., Reichert, M., Donadt C.*, Poesch M.S., Gunn, J.A., and M. Amyot. (2022) Mercury, selenium and arsenic concentrations in Canadian freshwater fish and a perspective on human consumption intake and risk. Journal of Hazardous Materials Advances.

*Lab members: Caitlyn Donadt and Mark Poesch. Check out opportunities in the lab!

Donadt, C.*, Cooke, C., Graydon, J. and M.S. Poesch. (2021) Mercury bioaccumulation in stream fish from an agriculturally-dominated watershed. Chemosphere 262: 128059.

Abstract:

Bioaccumulation of mercury in freshwater fish is a complex process driven by environmental and biological factors. In this study, we assessed mercury in fish from four tributaries to the Red Deer River, Alberta, Canada, which are characterized by high surface water mercury concentrations. We used carbon (δ13C) and nitrogen (δ15N) stable isotopes to examine relationships between fish total mercury (THg) concentrations, food web dynamics and patterns in unfiltered THg and methylmercury (MeHg) concentrations. We found that THg concentrations exceeded the tissue residue quality guideline for the protection of wildlife consumers in 99.7% of fish sampled. However, while the surface water THg concentration was highest in Michichi Creek and the MeHg concentration was consistent across streams, patterns of fish THg concentrations varied depending on species. Furthermore, body size and trophic level were only correlated with THg concentrations in white sucker (Catostomus commersoni) and Prussian carp (Carrasius gibelio). The results of this study suggest that mercury poses a risk to the health of piscivorous wildlife in the Red Deer River watershed. Despite high THg concentrations in these streams, mercury bioaccumulation is not driven by environmental inorganic mercury concentrations. Additionally, commonly cited factors associated with mercury concentrations in fish, such as body size and trophic level, may not strongly influence bioaccumulation in these stream ecosystems.

Citation: Donadt, C., Cooke, C., Graydon, J. and M.S. Poesch. (2021) Mercury bioaccumulation in stream fish from an agriculturally-dominated watershed. Chemosphere 262: 128059.

Also Read:

Donadt, C.*, Cooke, C., Graydon, J. and M.S. Poesch. (2021) Biological factors moderate trace element accumulation in fish along an environmental concentration gradient. Environmental Toxicology and Chemistry 40(2): 422-434.

*Lab members: Caitlyn Donadt and Mark Poesch. Check out opportunities in the lab!

Theis, S.*, Ruppert, J.W.R*, Roberts, K.*, Koops, M., Minns, K. and M.S. Poesch. (2020) Compliance with and ecosystem function of biodiversity offsets in North American and European freshwaters. Conservation Biology 34(1) 41-53.

Abstract:

Land‐use change via human development is a major driver of biodiversity loss. To reduce these impacts, billions of dollars are spent on biodiversity offsets. However, studies evaluating offset project effectiveness that examine components such as the overall compliance and function of projects remain rare. We reviewed 577 offsetting projects in freshwater ecosystems that included the metrics project size, type of aquatic system (e.g., wetland, creek), offsetting measure (e.g., enhancement, restoration, creation), and an assessment of the projects’ compliance and functional success. Project information was obtained from scientific and government databases and gray literature. Despite considerable investment in offsetting projects, crucial problems persisted. Although compliance and function were related to each other, a high level of compliance did not guarantee a high degree of function. However, large projects relative to area had better function than small projects. Function improved when projects targeted productivity or specific ecosystem features and when multiple complementary management targets were in place. Restorative measures were more likely to achieve targets than creating entirely new ecosystems. Altogether the relationships we found highlight specific ecological processes that may help improve offsetting outcomes.

Highlighted by CBC Radio: (link).

Citation: Theis, S.*, Ruppert, J.W.R*, Roberts, K.*, Koops, M., Minns, K. and M.S. Poesch. (2020) Compliance with and ecosystem function of biodiversity offsets in North American and European freshwaters. Conservation Biology 34(1) 41-53.

Also Read:

Theis, S.*  Koops, M. and M.S. Poesch. (2022) A meta-analysis on the effectiveness of offsetting strategies for harm to freshwater fishes. Environmental Management 70(5): 793-807.

*Lab members:  Sebastian Theis, Jonathan Ruppert, Karling Roberts and  Mark Poesch. Check out opportunities in the lab!

Ruppert, J.L.W.*, Hogg, J., and M.S. Poesch. (2018) Community assembly and the sustainability of habitat offsetting targets in the first compensation lake in the oil sands region in Alberta, Canada. Biological Conservation 219: 138-146.

Abstract:

Resource development can have a negative impact on species productivity and diversity through the loss and fragmentation of habitat. In many countries, developers are required by law to offset such impacts by replacing lost habitat or providing other forms of compensation. In the case of broad scale development, offsets often cannot be constructed to replace lost habitat “like-for-like” (i.e., they are not ecologically equivalent). In freshwater ecosystems, one approach to habitat offsetting is to create new lake ecosystems, called compensation lakes, to replace lost riverine habitat. In this study, we use a long-term data set (2008–2015) of fish and benthic invertebrate communities from Canada’s first compensation lake in the oil sands region of Alberta, to address (1) whether the assembly of the fish community has a trajectory that is influenced by management activities and (2) determine whether the community composition in the habitat offset is common in natural lake ecosystems within the region. We find a significant decline in the mean trophic level of the lake, where 61.9% of the variation in trophic level is explained by time indicating a strong structuring influence on fish communities. This outcome has enabled the compensation lake to meet overall and single species productivity targets, but we find that the species assemblage and composition is not common within the region. A combination of the founding species community and reduced connectivity of the lake has contributed to the current fish community structure, which may be problematic for the sustainability of the habitat offsetting targets. Our study highlights the need to establish multiple conservation guidelines, using both productivity and diversity based metrics, to provide the best ecological equivalency, which can produce better function, resilience and health within focal species communities in habitat offsets that are not “like-for-like.”

CitationRuppert, J.L.W., Hogg, J., and M.S. Poesch. (2018) Community assembly and the sustainability of habitat offsetting targets in the first compensation lake in the oil sands region in Alberta, Canada. Biological Conservation 219: 138-146.

Graphical Abstract:

Figure – Changes in Freshwater Communities Through Time. Shown is teh annual (A) mean density and (B) species diversity of fish species in Horizon Lake during the monitoring period of 2008-2015. Also shown is the corresponding annual (C) mean density and (D) diversity of bentic invertebrates during that period (EK- Ekman Grab; KN – Kick Net).

Also Read:

Theis, S.*, Ruppert, J. L. W. and M. S. Poesch. (2023) Coarse woody habitat use by local fish species and structural integrity of enhancements over time in a shallow northern boreal lake assessed in a Bayesian modeling approach. Ecological Solutions and Evidence 4(2): e12200.

*Lab members: Jonathan RuppertMark Poesch. Check out opportunities in the lab!

Sun, C., Shotyk, W., Cuss, C., Donner, M., Fennel, M., Javed, M., Noernberg, T., Poesch, M.S., Pelletier, R., Sinnatamby, N.*, Siddique, T., and J. Martin. (2017) Characterisation of naphthenic acids and bitumen derived organics in natural water from the Athabasca Oil Sands Region, Canada. Environmental Science and Technology 51 (17): 9524-9532

Abstract:

With growth of the Canadian oil sands industry, concerns have been raised about possible seepage of toxic oil sands process-affected water (OSPW) into the Athabasca River (AR). A sampling campaign in fall 2015 was undertaken to monitor for anthropogenic seepage while also considering natural sources. Naphthenic acids (NAs) and thousands of bitumen-derived organics were characterized in surface water, groundwater, and OSPW using a highly sensitive online solid phase extraction-HPLC-Orbitrap method. Elevated NA concentrations and bitumen-derived organics were detected in McLean Creek (30.1 μg/L) and Beaver Creek (190 μg/L), two tributaries that are physically impacted by tailings structures. This was suggestive of OSPW seepage, but conclusive differentiation of anthropogenic and natural sources remained difficult. High NA concentrations and bitumen-derived organics were also observed in natural water located far north of the industry, including exceedingly high concentrations in AR groundwater (A5w-GW, 2000 μg/L) and elevated concentration in a tributary river (Pierre River, 34.7 μg/L). Despite these evidence for both natural and anthropogenic seepage, no evidence of any bitumen-derived organics was detected at any location in AR mainstem surface water. The chemical significance of any bitumen-derived seepage to the AR was therefore minimal, and focused monitoring in tributaries will be valuable in the future.

Citation: Sun, C., Shotyk, W., Cuss, C., Donner, M., Fennel, M., Javed, M., Noernberg, T., Poesch, M.S., Pelletier, R., Sinnatamby, N., Siddique, T., and J. Martin. (2017) Characterisation of naphthenic acids and bitumen derived organics in natural water from the Athabasca Oil Sands Region, Canada. Environmental Science and Technology 51 (17): 9524-9532

Also Read:

Shotyk, W., Bicalho, B., Cuss, C.W., Nagel, A., Noernberg, T., Poesch, M.S., and N.R. Sinnatamby*. (2018) Bioaccumulation of Tl in otoliths of Trout-perch (Percopsis omiscomaycus) from the Athabasca River, upstream and downstream of bitumen mining and upgrading. Science of the Total Environment 650(2): 2559-2566.

*Lab members: Nilo SinnatambyMark Poesch. Check out opportunities in the lab!

Camaclang, A.E., Curtis, J.M.R., Poesch, M.S., and M.A. Koops. (2017) Modelling the impact of poaching on metapopulation viability for data-limited species. Canadian Journal of Fisheries and Aquatic Science 74: 894-906.

Abstract:

We developed a spatially explicit simulation model of poaching behaviour to quantify the relative influence of the intensity, frequency, and spatial distribution of poaching on metapopulation viability. We integrated our model of poaching with a stochastic, habitat-based, spatially explicit population model, applied it to examine the impact of poaching on northern abalone (Haliotis kamtschatkana) metapopulation dynamics in Barkley Sound, British Columbia, Canada, and quantified model sensitivity to input parameters. While demographic parameters remained important in predicting extinction probabilities for northern abalone, our simulations indicate that the odds of extinction are twice as high when populations are subjected to poaching. Viability was influenced by poaching variables that affect the total number of individuals removed. Of these, poaching mortality was the most influential in predicting metapopulation viability, with each 0.1 increase in mortality rate resulting in 22.6% increase in the odds of extinction. By contrast, the location and spatial correlation of events were less important predictors of viability. When data are limited, simulation models of poaching combined with sensitivity analyses can be useful in informing management strategies and future research directions.

Citation: Camaclang, A.E., Curtis, J.M.R., Poesch, M.S., and M.A. Koops. 2017. Modelling the impact of poaching on metapopulation viability for data-limited species. Canadian Journal of Fisheries and Aquatic Science 74: 894-906.

Also Read:

Poesch, M.S. and D.A. Jackson (2012) Impact of species-specific dispersal and regional stochasticity on estimates of population viability in stream metapopulations. Landscape Ecology 27: 405-416.

Christensen-Dalsgaard, K., Sinnatamby, R.N.*, and M.S. Poesch. (2014) Metrics for assessing fisheries productivity of oil sands compensation lakes under Canada’s new Fisheries Act. Oil Sands Research and Information Network, University of Alberta, School of Energy and the Environment, Edmonton, Alberta. OSRIN Report No. TR-X. 52 pp

Summary:

The Alberta oil sands region contains one of the world’s largest oil deposits, estimated at 1.7 trillion barrels. Development in this region can have negative effects for aquatic species, governed under Canada’s Fisheries Act. The Fisheries Act allows the possibility for offsetting losses in fisheries productivity, e.g., through the creation of compensation lakes. Offsetting strategies are becoming increasingly important for large-scale developments such as mining operations in the oil sands region; they allow for development while ensuring that the project has ‘no net loss’ in fisheries productivity. In 2012, omnibus Bill C-38 fundamentally changed large sections of the federal Fisheries Act. The focus of fisheries management was shifted from the protection of fish habitat in general to ensuring the ongoing productivity (FP) of fish important to commercial, recreational and aboriginal (CRA) fisheries. Further, the changes formalized the use of offsetting strategies to compensate for damage to fish caused by development. The changes marked the move from the fisheries habitat management program (FHMP) as implemented prior to 2012, to the fisheries protection program (FPP). The goal of the FPP is to “provide for the sustainability and ongoing productivity of commercial, recreational and Aboriginal fisheries”. Lack of standardized protocols and procedures following a shift of this magnitude could not only result in considerable additional expenses for industry, but also in less reproducible and so less reliable results. Rapid standardization of best practices and data collection methods would help ensure cost-efficient, meaningful and transferable data. Currently, these best management practices are being determined through an ongoing process involving Fisheries and Oceans Canada (DFO), industrial partners and government officials. The aim is to define a standard set of indicators for use under the FPP framework and assess which models may suitable for forming the link between data sets and long-term projections for whole-population productivity. The interpretation of the changes to the Fisheries Act has been subject to controversy, making concise and publically available information important. Numerous scientific advisory reports have been published by DFO. However, there is currently a shortage of documents that give an overview over the scientific background necessary to understand how the changes may affect management practices, taking into account knowledge gaps and limitations in terms of data collection techniques. In this report, we will review existing monitoring tools as well as how the changes in policies associated with the shift from the FHMP to the FPP may affect management protocols. Under the FHMP, the conceptual endpoint for assessing the impacts of development on fisheries was to achieve no net loss of the productive capacity of fish habitat (PC). Habitat was quantified mainly by area, and the success of an offsetting project was often determined mainly through acceptable installation. Methods in use under the FHMP provided only approximate values for PC. For a meaningful planning, measurement and monitoring protocol that can help ensure fisheries productivity under the FPP, it may be necessary to move away from the previous practice of managing fish habitat in Canada based on the use of FP as a theoretical concept only. As productivity in itself is difficult to measure directly, it is necessary to find appropriate indicators that can link changes in the components of productivity of individual fish or subsections of populations to changes in population-level fisheries productivity. We have compiled a list of indicators that may be used for estimating productivity of fisheries populations. Solid measurements of fisheries productivity require repeated monitoring protocols extended over multiple years as well as a broadening of the definition of habitat affected by development. The financially and ecologically prohibitive nature of obtaining comprehensive, long-term data sets may make models an essential tool for linking limited data on subsets of populations with whole-population productivity and long-term projections. However, the trade-off between strength of model predictions and quality and quantity of data may make it a challenge to strike the balance between data needs for accurate predictions and financial feasibility. In using knowledge-based standards for planning and executing compensation lake development, a key parameter to evaluate would be the carrying capacity of various compensation lake ecosystems. It may be a challenge to ensure an appropriate agreement between offsetting indicators and environmental assessment indicators, as established ecosystems are compared with populations in the process of establishing in a newly expanded habitat. On the other hand, lack of density dependence in the early establishment phase gives good possibilities for providing solid estimates of intrinsic growth rate of the populations within this specific habitat. Future research should be conducted for areas characterized by intensive development to create models that allow for robust estimates of productivity based on limited and specific indicators that are manageable to measure. As factors limiting fisheries productivity vary between species, habitats and regions, it is likely that this would have to occur through the development of models specific for the given habitats and geographical areas. If the drivers of the ecosystem in question are not well studied, the most cost-effective and ecologically sound way of implementing the FPP may be to adopt the management practices of the FHMP largely unaltered, but with the interpretive end goal shifted to FP. This would only require a mandatory inclusion of population level data in the monitoring protocols, and an extended monitoring period of several years. All of this constitutes protocols already in use under the FHMP. Though much work has been done on measuring and modelling the productivity of fish populations, it has proven difficult or impossible to find simple, reproducible techniques that can be applied across habitat types and ecosystems. In our opinion, the best predictors for fisheries productivity remain the quantity and quality of available fish habitat combined with abundance, size structure data and species composition within the given habitats.

CitationChristensen-Dalsgaard, K., Sinnatamby, R.N., and M.S. Poesch. (2014) Metrics for assessing fisheries productivity of oil sands compensation lakes under Canada’s new Fisheries Act. Oil Sands Research and Information Network, University of Alberta, School of Energy and the Environment, Edmonton, Alberta. OSRIN Report No. TR-X. 52 pp.

Also Read:

Theis, S.* and M. S. Poesch. (In Press).  Mitigation bank applications for freshwater systems: Control mechanisms, project complexity, and caveats. PLOS One.

*Lab members: Nilo SinnatambyMark Poesch. Check out opportunities in the lab!